Từ giả thiết có
\({u_{n + 1}}\left( {{u_n} + 4} \right) = 2{u_n} + 3\) hay \({u_{n + 1}}.{u_n} + 4{u_{n + 1}} = 2{u_n} + 3{\rm{ }}\left( 1 \right)\)
Lập tỉ số \(\dfrac{{{x_{n + 1}}}}{{{x_n}}} = \dfrac{{{u_{n + 1}} - 1}}{{{u_{n + 1}} + 3}}.\dfrac{{{u_n} + 3}}{{{u_n} - 1}}\) \( = \dfrac{{{u_{n + 1}}{u_n} + 3{u_{n + 1}} - {u_n} - 3}}{{{u_{n + 1}}{u_n} - {u_{n + 1}} + 3{u_n} - 3}}{\rm{ }}\left( 2 \right)\)
Từ (1) suy ra \({u_{n + 1}}.{u_n} = 2{u_n} + 3 - 4{u_{n + 1,}}\) thay vào (2) ta được
\(\dfrac{{{x_{n + 1}}}}{{{x_n}}}\)\( = \dfrac{{2{u_n} + 3 - 4{u_{n + 1}} + 3{u_{n + 1}} - {u_n} - 3}}{{2{u_n} + 3 - 4{u_{n + 1}} - {u_{n + 1}} + 3{u_n} - 3}}\) \( = \dfrac{{{u_n} - {u_{n + 1}}}}{{5\left( {{u_n} - {u_{n + 1}}} \right)}} = \dfrac{1}{5}.\)
Vậy \({x_{n + 1}} = \dfrac{1}{5}{x_n},\) ta có cấp số nhân \(\left( {{x_n}} \right)\) với \(q = \dfrac{1}{5}\) và \({x_1} = - \dfrac{1}{3}.\)
Ta có \({x_n} = - \dfrac{1}{3}{\left( {\dfrac{1}{5}} \right)^{n - 1}}.\)
Từ đó tìm được \({u_n} = \dfrac{{3{x_n} - 1}}{{1 - {x_n}}} = \dfrac{{ - {{\left( {\dfrac{1}{5}} \right)}^{n - 1}} - 1}}{{1 + \dfrac{1}{3}{{\left( {\dfrac{1}{5}} \right)}^{n - 1}}}}\) \( = \dfrac{{{{\left( {\dfrac{1}{5}} \right)}^{n - 1}} + 1}}{{\dfrac{1}{3}{{\left( {\dfrac{1}{5}} \right)}^{n - 1}} + 1}}.\)