Điều kiện của mỗi phương trình:
a)\(\left\{ {\begin{array}{*{20}{c}}{ - 3x + 2 \ge 0}\\{x + 1 \ne 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le \dfrac{2}{3}}\\{x \ne 1}\end{array}} \right.\)
b) \(\left\{ {\begin{array}{*{20}{c}}{x - 2 \ge 0}\\{ - x - 4 \ge 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge 2}\\{x \le - 4}\end{array}} \right.\)
Không có số thực x nào thỏa mãn điều kiện của phương trình.
c) \(\left\{ {\begin{array}{*{20}{c}}{3{x^2} + 6x + 11 > 0}\\{2x + 1 \ge 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3{{(x + 1)}^2} + 8 > 0}\\{x \ge - \dfrac{1}{2}}\end{array}} \right.\)
Vì ta có \(3{x^2} + 6x + 11 = 3{(x + 1)^2} + 8 > 0\)với mọi x, nên điều kiện của phương trình là \(x \ge - \dfrac{1}{2}\).
d) \(\left\{ {\begin{array}{*{20}{c}}{ - 3x + 2 \ge 0}\\{{x^2} - 9 \ne 0}\end{array}} \right.\) \( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \ge - 4}\\{x \ne \pm 3}\end{array}} \right.\)