Bài 35 trang 24 SGK Toán 9 tập 2

(Bài toán cổ Ấn Độ). Số tiền mua \(9\) quả thanh yên và \(8\) quả táo rừng thơm là \(107\) rupi. Số tiền mua \(7\) quả thanh yên và \(7\) quả táo rừng thơm là \(91\) rupi. Hỏi giá mỗi quả thanh yên và mỗi quả táo rừng thơm là bao nhiêu rubi ?

Lời giải

Gọi \(x\) (rupi) là giá tiền mỗi quả thanh yên,  \(y\) (rupi) là giá tiền mỗi quả táo rừng. (Điều kiện \(x > 0, y > 0\) ).

Số tiền mua \(9\) quả thanh yên là: \(9x\) (rupi)

Số tiền mua \(8\) quả táo rừng thơm là: \(8x\) (rupi)

Tổng số tiền là \(107\) rupi nên ta có: 

\(9x+8y=107\)

Số tiền mua \(7\) quả thanh yên là \(7x\) (rupi)

Số tiền mua \(7\) quả táo rừng thơm là: \(7y\) (rupi)

Tổng số tiền là \(91\) rupi nên ta có:

\(7x+7y=91\)

Ta có hệ phương trình:

\(\left\{\begin{matrix} 9x + 8y =107 & & \\ 7x + 7y = 91& & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 63x + 56y =749 & & \\ 56x + 56y = 728 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 63x + 56y =749 & & \\ 7x = 21 & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}  56y =749 - 63x & & \\ x = 3 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix}  56y =749 - 63.3 & & \\ x = 3 & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}  56y =560 & & \\ x = 3 & & \end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix}  y =10 & & \\ x = 3 & & \end{matrix} (thỏa\ mãn) \right.\)

Vậy, thanh yên \(3\) rupi/quả; táo rừng \(10\) rupi/quả.