Bài 3.51 trang 134 SBT đại số và giải tích 11

Đề bài

Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, hãy chọn dãy số bị chặn :

(A)   \({u_n} = \sqrt {{n^2} + 1} \) ;

(B)   \({u_n} = n + \dfrac{1}{n}\) ;

(C)   \({u_n} = {2^n} + 1\) ;

(D)   \({u_n} = \dfrac{n}{{n + 1}}.\)

Lời giải

Xét đáp án D ta thấy:

\({u_n} = \dfrac{n}{{n + 1}} > 0,\forall n \in {\mathbb{N}^*}\) và \({u_n} = \dfrac{n}{{n + 1}} < 1,\forall n \in {\mathbb{N}^*}\) nên \(0 < {u_n} < 1\).

Do đó dãy số \(\left( {{u_n}} \right)\) là dãy số bị chặn.

Đáp án D


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”