Bài 3.53 trang 78 SBT đại số 10

Đề bài

Giải và biện luận theo tham số m hệ phương trình:

\(\left\{ \begin{array}{l}2x(3m + 1)y = m - 1\\(m + 2)x + (4m + 3)y = m\end{array} \right.\)

Lời giải

Nhân phương trình thứ nhất của hệ với m + 2, nhân phương trình thứ hai với 2 ta được hệ phương trình

\(\left\{ \begin{array}{l}2(m + 2)x + (3m + 1)(m + 2)y = (m - 1)(m + 2)\\2(m + 2)x + 2(4m + 3)y = 2m\end{array} \right.\)

Trừ hai phương trình vế theo vế ta được phương trình:

\((3{m^2} - m - 4)y = (m + 1)(m - 2)\) (1)

+Với  \(m =  - 1\) phương trình (1) có dạng:

\(0y = 0\)

Phương trình này nhận mọi giá trị thức của y làm nghiệm. Lúc đó thay \(m =  - 1\)vào hệ phương trình đã cho, hai phương trình trở thành một phương trình.

\(x - y =  - 1\)\( \Leftrightarrow y = x + 1\), \(x\)  tùy ý.

+Với  \(m = \dfrac{4}{3}\) phương trình (1) có dạng.

\(0y =  - \dfrac{{14}}{9}\).

Phương trình này vô nghiệm, do đó hệ phương trình đã cho vô nghiệm.

+Với \(m \ne  - 1\)và \(m \ne \dfrac{4}{3}\), phương trình (1) có nghiệm duy nhất

\(y = \dfrac{{m - 2}}{{3m - 4}}\)

Thay vào một trong hai phương trình của hệ đã cho ta suy ra

\(x = \dfrac{{ - m + 3}}{{3m - 4}}\).

Kết luận

\(m = \dfrac{4}{3}\): Hệ phương trình đã cho vô nghiệm.

\(m =  - 1\): Hệ phương trình đã cho có vô số nghiệm

\(x = a,y = a + 1\), a là số thực tùy ý.

\(m \ne  - 1\),\(m \ne \dfrac{4}{3}\): Hệ phương trình đã cho có nghiệm duy nhất :

\(m \ne  - 1\)và \((x;y) = (\dfrac{{3 - m}}{{3m - 4}};\dfrac{{m - 2}}{{3m - 4}})\)