Đáp án A:
Xét \(\displaystyle I = \int\limits_{\frac{\pi }{2}}^\pi {\frac{{\sin x}}{x}dx} - \int\limits_{\frac{\pi }{2}}^\pi {\frac{{\cos x}}{x}dx} \) \(\displaystyle = \int\limits_{\frac{\pi }{2}}^\pi {\left( {\frac{{\sin x - \cos x}}{x}} \right)dx} \)
Dễ thấy trên đoạn \(\displaystyle \left[ {\frac{\pi }{2};\pi } \right]\) thì \(\displaystyle x > 0\) và \(\displaystyle \sin x > 0 > \cos x\) \(\displaystyle \Rightarrow \sin x - \cos x > 0\)
Suy ra \(\displaystyle \frac{{\sin x - \cos x}}{x} > 0\) \(\displaystyle \Rightarrow I = \int\limits_{\frac{\pi }{2}}^\pi {\left( {\frac{{\sin x - \cos x}}{x}} \right)dx} > 0\)
\(\displaystyle \Rightarrow \int\limits_{\frac{\pi }{2}}^\pi {\frac{{\sin x}}{x}dx} > \int\limits_{\frac{\pi }{2}}^\pi {\frac{{\cos x}}{x}dx} \).
Vậy A sai.
Chọn A.