Bài 36 trang 82 SGK Toán 9 tập 2

Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\). Gọi \(M, N\) lần lượt là điểm chính giữa của cung \(AB\) và cung \(AC\). Đường thẳng \(MN\) cắt dây \(AB\) tại \(E\) và cắt dây \(AC\) tại \(H\). Chứng minh rằng tam giác \(AEH\) là tam giác cân.

Lời giải

                                

Ta có: \(\widehat {AHM}\)= \(\dfrac{sđ\overparen{AM}+sđ\overparen{NC}}{2}\,\,\, (1)\)   

           \(\widehat {AEN}\)= \(\dfrac{sđ\overparen{MB}+sđ\overparen{AN}}{2}\,\,\,  (2)\)       

(Vì  \(\widehat {AHM}\) là góc có đỉnh cố định ở bên trong đường tròn chắn các cung \(AM\) và cung \(NC\), và  \(\widehat {AEN}\) là góc có đỉnh bên trong đường tròn chắn các cung \(AN\) và cung \( MB\)).

Theo gỉả thiết thì:

\(\overparen{AM}=\overparen{MB}   (3)\) (\(M\) là điểm chính giữa cung \(AB\)).

\(\overparen{NC}=\overparen{AN}    (4)\)  \(N\) là điểm chính giữa cung \(AC\)).

Từ (1),(2), (3), (4), suy ra \(\widehat {AHM}= \widehat {AEN}\) do đó \(∆AEH\) là tam giác cân (định nghĩa tam giác cân).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”