Bài 3.62 trang 134 SBT hình học 12

Đề bài

Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD. A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.

Lời giải

Ta chọn hệ trục tọa độ như sau:  B1 là gốc tọa độ, \(\overrightarrow {{B_1}{A_1}}  = \overrightarrow i ,\overrightarrow {{B_1}{C_1}}  = \overrightarrow j ,\overrightarrow {{B_1}B}  = \overrightarrow k \).

Trong hệ trục vừa chọn, ta có B1(0; 0; 0), B(0; 0; 1), A1(1; 0; 0), D1(1; 1; 0), C(0; 1; 1), D(1; 1; 1), C1(0; 1; 0).

Suy ra  \(M\left( {0;0;\dfrac{1}{2}} \right),P\left( {1;\dfrac{1}{2};0} \right),N\left( {\dfrac{1}{2};1;1} \right)\)

Ta có  \(\overrightarrow {MP}  = \left( {1;\dfrac{1}{2}; - \dfrac{1}{2}} \right);\)\(\overrightarrow {{C_1}N}  = \left( {\dfrac{1}{2};0;1} \right)\)

Gọi  \((\alpha )\) là mặt phẳng chứa C1N và song song với MP.

\((\alpha )\) có vecto pháp tuyến là  \(\overrightarrow n  = \left( {\dfrac{1}{2}; - \dfrac{5}{4}; - \dfrac{1}{4}} \right)\)  hay \(\overrightarrow n ' = (2; - 5; - 1)\)

Phương trình  của \((\alpha )\) là   \(2x – 5(y – 1) – z = 0 \) hay \(2x – 5y – z + 5 = 0\)

Ta có  \(d(MP,{C_1}N) = d(M,(\alpha )) = \dfrac{{| - \dfrac{1}{2} + 5|}}{{\sqrt {25 + 4 + 1} }} = \dfrac{9}{{2\sqrt {30} }}\)

Ta có:  \(\cos (\widehat {MP,{C_1}N}) = \dfrac{{|\overrightarrow {MP} .\overrightarrow {{C_1}N} |}}{{|\overrightarrow {MP} |.|\overrightarrow {{C_1}N} |}} = 0\).  Vậy \((\widehat {MP,{C_1}N}) = {90^0}\)