Ta có \(\overrightarrow {{n_\beta }} = (1;3k; - 1)\) và \(\overrightarrow {{n_\gamma }} = (k; - 1;1)\). Gọi \(d = \beta \cap \gamma \)
Đường thẳng \(d\) vuông góc với giá của \(\overrightarrow {{n_\beta }} \) và \(\overrightarrow {{n_\gamma }} \) nên có vecto chỉ phương là:
\(\overrightarrow u = \left[ {\overrightarrow {{n_\beta }} ,\overrightarrow {{n_\gamma }} } \right]\)\( = \left( {3k - 1; - k - 1; - 1 - 3{k^2}} \right)\)
Ta có: \(d \bot (\alpha )\)\( \Leftrightarrow \dfrac{{3k - 1}}{1} = \dfrac{{ - k - 1}}{{ - 1}} = \dfrac{{ - 1 - 3{k^2}}}{{ - 2}}\) \( \Leftrightarrow k = 1\)