Bài 37 trang 13 SBT toán 9 tập 2

Đề bài

Cho một số có hai chữ số. Nếu đổi chỗ hai chữ số của nó thì được một số lớn hơn số đã cho là \(63\). Tổng của số đã cho và số mới tạo thành bằng \(99\). Tìm số đã cho.

Lời giải

Gọi chữ số hàng chục của số đã cho là \(x\), chữ số hàng đơn vị là \(y.\)

Điều kiện: \(x,y \in {\mathbb{N}^*}, x ≤ 9,y ≤ 9\)

Khi đó số đã cho \(\overline {xy}  = 10x + y\).

Nếu đổi chỗ hai chữ số của số đã cho ta được số mới là \(\overline {yx}  = 10y + x\)

Do số mới lớn hơn số đã cho là \(63\) nên ta có phương trình:

\(\overline {yx}-\overline {xy}=63\)

\(\Leftrightarrow \left( {10y + x} \right) - \left( {10x + y} \right) = 63 \\ \Leftrightarrow 9y - 9x = 63\\ \Leftrightarrow - x + y = 7\)

Mà tổng của số mới và số đã cho bằng \(99\) nên ta có phương trình:

\(\overline {yx}+\overline {xy}=99\)

\(\Leftrightarrow \left( {10x + y} \right) + \left( {10y + x} \right) = 99 \\ \Leftrightarrow 11x + 11y = 99 \\ \Leftrightarrow x + y = 9\)

Khi đó ta có hệ phương trình:

\(\eqalign{
& \left\{ {\matrix{
{ - x + y = 7} \cr 
{x + y = 9} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{2y = 16} \cr 
{x + y = 9} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 8} \cr 
{x + 8 = 9} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 8} \cr 
{x = 1} \cr} } \right. \cr} \)

Ta thấy \(x =1; y = 8\) thỏa mãn điều kiện \(x,y \in {\mathbb{N}^*}, x ≤ 9,y ≤ 9\).

Vậy số đã cho là \(18.\)