Bài 3.7 trang 130 SBT hình học 11

Đề bài

Cho hình hộp \(ABCD.A’B’C’D’\) có \(P\) và \(R\) lần lượt là trung điểm các cạnh \(AB\) và \(A’D’\). Gọi \(P’, Q, Q’,R'\) lần lượt là tâm đối xứng của các hình bình hành \(ABCD, CDD’C’\), \(A’B’C’D’, ADD’A’\)

a) Chứng minh rằng \(\overrightarrow {PP'}  + \overrightarrow {QQ'}  + \overrightarrow {R{\rm{R}}'}  = \overrightarrow 0 \)

b) Chứng minh hai tam giác \(PQR\) và \(P’Q’R’ \) có trọng tâm trùng nhau.

Lời giải

a) Ta có :\(\overrightarrow {PP'}  = {1 \over 2}\overrightarrow {A{\rm{D}}} ,\overrightarrow {QQ'}  = {1 \over 2}\overrightarrow {DA'} ,\) \(\overrightarrow {R{\rm{R}}'}  = {1 \over 2}\overrightarrow {A'A} \)

Vậy: \(\overrightarrow {PP'}  + \overrightarrow {QQ'}  + \overrightarrow {R{\rm{R}}'}\) \(  = {1 \over 2}\left( {\overrightarrow {A{\rm{D}}}  + \overrightarrow {DA'}  + \overrightarrow {A'A} } \right) = \overrightarrow 0 \)

b) Gọi \(G\) và \(G’ \) lần lượt là trọng tâm các tam giác \(PQR\) và \(P’Q’R’\).

Theo câu a) ta có: \(\overrightarrow {PP'}  + \overrightarrow {QQ'}  + \overrightarrow {R{\rm{R}}'}  = \overrightarrow 0 \)

Do đó:

\(\left( {\overrightarrow {PG}  + \overrightarrow {GG'}  + \overrightarrow {G'P'} } \right) \) \(+ \left( {\overrightarrow {QG}  + \overrightarrow {GG'}  + \overrightarrow {G'Q'} } \right)  \) \(+ \left( {\overrightarrow {RG}  + \overrightarrow {GG'}  + \overrightarrow {G'R'} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \underbrace {\left( {\overrightarrow {PG}  + \overrightarrow {QG}  + \overrightarrow {RG} } \right)}_{\overrightarrow 0 } + 3\overrightarrow {GG'} \) \( + \underbrace {\left( {\overrightarrow {G'P'}  + \overrightarrow {G'Q'}  + \overrightarrow {G'R'} } \right)}_{\overrightarrow 0 } = \overrightarrow 0 \) 

\(3\overrightarrow {GG'}  = \overrightarrow 0 \) ⟹\(G\) trùng với \(G’\)

Vậy hai tam giác \(PQR \) và \(P’Q’R’\) có cùng trọng tâm.