Giả sử hình thang \(ABCD\) có \(AB // CD,\) đường trung bình là \(MN.\) Gọi \(I\) là trung điểm của \(MN,\) đường thẳng bất kỳ đi qua \(I\) cắt \(AB\) tại \(P\) và \(CD\) tại \(Q\)
Ta có hai hình thang \(APQD\) và \(BPQC\) có chung đường cao.
\(MI\) là đường trung bình của hình thang \(APQD:\)
\( \Rightarrow MI = \dfrac{1} {2}\left( {AP + QD} \right)\)
\(IN\) là đường trung bình của hình thang \(BPQC :\)
\( \Rightarrow IN = \dfrac{1} {2}\left( {BP + QC} \right)\)
\(S_{APQD}=\dfrac{1}{2}\ \left( {AP + QD} \right).AH\) \(=MI.AH\) \((1)\)
\(S_{BPQC}=\dfrac{1}{2}\ \left( {BP + QC} \right).AH\) \(=NI.AH\) \((2)\)
\(IM = IN\) (gt) \((3)\)
Từ \((1),\, (2)\) và \((3)\) suy ra : \({S_{APQD}} = {S_{BPQC}}\) không phụ thuộc vào \(P\) và \(Q\)