a) Đồ thị hàm số \(y = 0,5x + 2\) là đường thẳng đi qua các điểm \((0; 2)\) và \((-4; 0)\)
Đồ thị hàm số \(y = 5 – 2x\) là đường thẳng đi qua các điểm \((0; 5)\) và \((2,5; 0)\)
b) Ta có giao điểm của đường thẳng \(y=0,5x+2\) với trục hoành là điểm \(A(-4; 0),\) giao điểm của đường thẳng \(y=5-2x\) với trục hoành là điểm \(B(2,5; 0)\)
Tìm tọa độ điểm \(C.\)
Ta có: phương trình hoành độ giao điểm của đường thẳng \(y = 0,5x + 2\) và \(y = 5 – 2x\) là
\(0,5x + 2 = 5 – 2x ⇔ 2,5x = 3\)
\(⇔ x = 1,2\)
Suy ra \(y = 0,5 . 1,2 + 2 = 2,6.\) Vậy \(C (1,2; 2,6)\)
c) Gọi \(D\) là hình chiếu của \(C\) trên \(Ox\) ta có \(D(1,2;0)\)
\(CD = 2,6; AB = AO + OB = 4 + 2,5 = 6,5 (cm)\)
\(∆ACD\) vuông tại \(D\) nên \(AC^2 = CD^2 + DA^2\)
\( \Rightarrow AC = \sqrt {2,{6^2} + 5,{2^2}} = \sqrt {33,8} \approx 5,81(cm)\)
Tương tự : \(BC = \sqrt {B{{\rm{D}}^2} + C{{\rm{D}}^2}} \)
\(= \sqrt {1,{3^2} + 2,{6^2}} = \sqrt {8,45} \approx 2,91(cm)\)
d) Ta có ∆ACD vuông tại D nên \(\displaystyle \tan\widehat {CA{\rm{D}}} = {{C{\rm{D}}} \over {A{\rm{D}}}} = {{2,6} \over {5,2}} = {1 \over 2}\)
\(\Rightarrow \widehat {CA{\rm{D}}} \approx {26^0}34'\). Góc tạo bởi đường thẳng \(\displaystyle y = {1 \over 2}x + 2\) và trục Ox là \(26^034’\)
Ta có ∆CBD vuông tại D nên \(\displaystyle \tan\widehat {CB{\rm{D}}} = {{C{\rm{D}}} \over {B{\rm{D}}}} = {{2,6} \over {1,3}} = 2 \Rightarrow \widehat {CB{\rm{D}}} \approx {63^0}26'\)
Góc tạo bởi đường thẳng \(y = 5 – 2x\) và trục \(Ox\) là \(180^0– 63^026’ ≈ 116^034’.\)