Bài 37 trang 92 SBT toán 8 tập 2

Đề bài

Cho tam giác \(ABC\) có \(\widehat A = 60^\circ \), \(AB = 6cm, AC = 9cm\)

a) Dựng tam giác đồng dạng với tam giác \(ABC\) theo tỉ số đồng dạng \(\displaystyle k = {1 \over 3}\)

b) Hãy nêu một vài cách dựng khác và vẽ hình trong từng trường hợp cụ thể.

Lời giải

a)

Cách dựng:

- Dựng \(\widehat {xAy} = {60^o}\)

- Trên tia \(Ax\) lấy hai điểm \(B\) và \(B'\) sao cho \(AB=6\,cm\) và \(AB’ = 2cm.\)

- Trên tia \(Ay\) lấy điểm \(C\) và \(C'\) sao cho \(AC=9cm\) và \(AC’ = 3cm.\)

- Nối \(B\) với \(C\), ta được \(\Delta ABC\) thỏa mãn yêu cầu bài toán.

- Nối \(B’\) với \(C’\), khi đó \(\Delta AB’C’\) là tam giác cần dựng.

Chứng minh:

Theo cách dựng, ta có:

\(\displaystyle{{AB'} \over {AB}} = {2 \over 6} = {1 \over 3}\)

\(\displaystyle{{AC'} \over {AC}} = {3 \over 9} = {1 \over 3}\)

\( \Rightarrow\displaystyle {{AB'} \over {AB}} = {{AC'} \over {AC}} = {1 \over 3} \)

Xét \(∆ AB’C’\) và \(∆ ABC\) có:

\(\displaystyle {{AB'} \over {AB}} = {{AC'} \over {AC}} = {1 \over 3} \)

\(\widehat A\) chung

\( \Rightarrow ∆ AB’C’\) đồng dạng \(∆ ABC\) (c.g.c)

b) 

Cách dựng:

- Dựng \(\widehat {xAy} = {60^o}\)

- Trên tia \(Ax\) lấy hai điểm \(B\) sao cho \(AB=6\,cm\).

- Trên tia \(Ay\) lấy điểm \(C\) sao cho \(AC=9cm\).

- Nối \(B\) với \(C\), ta được \(\Delta ABC\) thỏa mãn yêu cầu bài toán.

- Trên tia đối của tia \(Ax\) dựng điểm \(B’\) sao cho \(AB’ = 2cm.\)

- Trên tia đối của tia \(Ay\) dựng điểm \(C’\) sao cho \(AC’ = 3cm.\)

- Nối \(B’\) với \(C’\), khi đó \(\Delta AB’C’\) là tam giác cần dựng.

Chứng minh:

Theo cách dựng, ta có:

\(\displaystyle{{AB'} \over {AB}} = {2 \over 6} = {1 \over 3}\)

\(\displaystyle{{AC'} \over {AC}} = {3 \over 9} = {1 \over 3}\)

\( \Rightarrow\displaystyle {{AB'} \over {AB}} = {{AC'} \over {AC}} = {1 \over 3} \)

Xét \(∆ AB’C’\) và \(∆ ABC\) có:

\(\displaystyle {{AB'} \over {AB}} = {{AC'} \over {AC}} = {1 \over 3} \)

\(\widehat {B'AC'}=\widehat {BAC} \) (đối đỉnh)

\( \Rightarrow ∆ AB’C’\) đồng dạng \(∆ ABC\) (c.g.c)