a) +) Vẽ đồ thị hàm số \(y = 2x -2\) (d1)
Cho \(x = 0\) thì \(y = - 2\). Ta có :
Cho \(y = 0\) thì \(2x – 2 = 0\) \( \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\). Ta có: \((1; 0)\)
Đồ thị hàm số đi qua hai điểm \((0; 2)\) và \((1; 0)\)
+) Vẽ đồ thị hàm số \(y = - \dfrac{4}{3}x - 2\) (d2)
Cho \(x = 0\) thì \(y = - 2\). Ta có:
Cho \(y = 0\) thì \( - \dfrac{4 }{3}x - 2 = 0 \Leftrightarrow x = - 1,5\) . Ta có: \(\left( { - 1,5;0} \right)\)
Đồ thị hàm số đi qua hai điểm \(\left( {0; - 2} \right)\) và \(\left( { - 1,5;0} \right)\)
+) Vẽ đồ thị hàm số \(y = \dfrac{1}{3}x + 3\) (d3)
Cho \(x = 0\) thì \(y = 3.\) Ta có: \((0;3)\)
Cho \(y = 0\) thì \(\dfrac{1}{3}x + 3 = 0 \Leftrightarrow x = - 9\). Ta có: \((-9; 0)\)
Đồ thị hàm số đi qua hai điểm \((0; 3)\) và \((-9; 0)\)
b) Phương trình hoành độ giao điểm của (d1) và (d3) :
\(\eqalign{
& 2x - 2 = {1 \over 3}x + 3 \cr
& \Leftrightarrow 2x - {1 \over 3}x = 3 + 2 \cr
& \Leftrightarrow {5 \over 3}x = 5 \Leftrightarrow x = 3 \cr} \)
Tung độ giao điểm: \(y = 2.3 - 2 \Leftrightarrow y = 6 - 2 = 4\)
Vậy tọa độ điểm A là : \(A(3; 4)\)
Phương trình hoành độ giao điểm của (d2) và (d3):\(\eqalign{& - {4 \over 3}x - 2 = {1 \over 3}x + 3 \cr & \Leftrightarrow {1 \over 3}x + {4 \over 3}x = - 2 - 3 \cr & \Leftrightarrow {5 \over 3}x = - 5 \Leftrightarrow x = - 3 \cr} \)
Tung độ giao điểm :\(y = \dfrac{1}{3}.\left( { - 3} \right) + 3 \Leftrightarrow y = - 1 + 3 = 2\) Vậy tọa độ điểm B là :\( B(-3 ; 2)\)
c) Ta có:\(\eqalign{& A{B^2} = {\left( {{x_A} - {x_B}} \right)^2} + {\left( {{y_A} - {y_B}} \right)^2} \cr & = {\left( {3 + 3} \right)^2} + {\left( {4 - 2} \right)^2} = 40 \cr & AB = \sqrt {40} = 2\sqrt {10} \cr} \).