Bài 39 trang 106 SBT toán 9 tập 2

Đề bài

Trên đường tròn tâm \(O\) có một cung \(AB\) và \(S\) là điểm chính giữa của cung đó. Trên dây \(AB\) lấy hai điểm \(E\) và \(H.\) Các đường thẳng \(SH\) và \(SE\) cắt đường tròn theo thứ tự tại \(C\) và \(D.\) Chứng minh \(EHCD\) là một tứ giác nội tiếp.

Lời giải

\(S\) là điểm chính giữa của cung \(\overparen{AB}\).

\( \Rightarrow \) \(\overparen{SA} = \overparen{SB}\)  \((1)\)

\(\widehat {DEB} = \displaystyle {1 \over 2}(sđ \overparen{DCB} + sđ \overparen{AS})\)  (tính chất góc có đỉnh ở bên trong đường tròn)   \(           (2)\)

\(\widehat {DCS} = \displaystyle {1 \over 2} sđ \overparen{DAS}\) (tính chất góc nội tiếp) hay \(\widehat {DCS} =\displaystyle  {1 \over 2} (sđ \overparen{DA} + sđ \overparen{SA}\))   \( (3)\)

Từ \((1)\) và \((2)\) suy ra: \(\widehat {DEB} + \widehat {DCS}\)\( =\displaystyle  {1 \over 2} (sđ \overparen{DCB} + sđ \overparen{AS} + sđ \overparen{DA} + sđ \overparen{SA})\)   \(     (4)\)

Từ \((1)\) và \((4)\) suy ra: \(\widehat {DEB} + \widehat {DCS}\)\( =\displaystyle  {1 \over 2} (sđ \overparen{DCB} + sđ \overparen{BS}  + sđ \overparen{SA} + sđ \overparen{DA})\) \( = \displaystyle {{360^\circ } \over 2} = 180^\circ \)

Hay \(\widehat {DEH} + \widehat {DCH} = 180^\circ \)

Vậy: tứ giác \(EHCD\) nội tiếp được trong một đường tròn.