Bài 39 trang 83 SGK Toán 9 tập 2

Cho \(AB\) và \(CD\) là hai đường kính vuông góc của đường tròn \((O)\). Trên cung nhỏ \(BD\) lấy một điểm \(M\). Tiếp tuyến tại \(M\) cắt tia \(AB\) ở \(E\), đoạn thẳng \(CM\) cắt \(AB\) ở \(S\). Chứng minh \(ES = EM\).

Lời giải

                         

Xét đường tròn \((O)\) có hai đường kính \(AB \bot CD\) nên \( \widehat{AOC}=\widehat{BOC}=90^0\) nên \(\overparen{CA}=\overparen{CB}.\)

+) Ta có \( \widehat{MSE}\) là góc có đỉnh nằm trong đường tròn chắn cung \(AC\) và cung \(BM.\)

\(\Rightarrow \widehat{MSE} = \dfrac{sđ\overparen{CA}+sđ\overparen{BM}}{2}\)   (1)

+) \(\widehat{CME} \) là góc tạo bởi tia tiếp tuyến và dây cung chắn cung \(CM.\)

\(\Rightarrow \widehat{CME}= \dfrac{sđ\overparen{CM}}{2}= \frac{sđ\overparen{CB}+sđ\overparen{BM}}{2}\) (2)

+) Lại có: \(\overparen{CA}=\overparen{CB}\)  (cmt)         (3)

Từ (1), (2), (3) ta có: \(\widehat{MSE} = \widehat{CME}\)  từ đó \(∆ESM\)  là tam giác cân tại \(E\) và \(ES = EM\) (đpcm).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”