Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {\left( { - 3} \right)^{2n - 1}}.\)
a) Chứng minh dãy số \(\left( {{u_n}} \right)\) là cấp số nhân. Nêu nhận xét về tính tăng, giảm của dãy số ;
b) Lập công thức truy hồi của dãy số ;
c) Hỏi số \( - 19683\) là số hạng thứ mấy của dãy số ?
Đề bài
Cấp số nhân \(\left( {{u_n}} \right)\)có
\(\left\{ \begin{array}{l}{u_1} + {u_5} = 51\\{u_2} + {u_6} = 102.\end{array} \right.\)
a) Tìm số hạng đầu và công bội của cấp số nhân :
b) Hỏi tổng của bao nhiêu số hạng đầu tiên sẽ bằng \(3069\) ?
c) Số \(12288\) là số hạng thứ mấy ?
Đề bài
Tìm số các số hạng của cấp số nhân \(\left( {{u_n}} \right),\)biết
a) \(q = 2,{u_n} = 96,{S_n} = 189\) ;
b) \({u_1} = 2,{u_n} = \dfrac{1}{8},{S_n} = \dfrac{{31}}{8}\) .
Đề bài
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết
a) \(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right.\) ;
b) \(\left\{ \begin{array}{l}{u_2} - {u_4} + {u_5} = 10\\{u_3} - {u_5} + {u_6} = 20\end{array} \right.\) .
Đề bài
Cho dãy số \(\left( {{u_n}} \right):\left\{ \begin{array}{l}{u_1} = 0\\{u_{n + 1}} = \dfrac{{2{u_n} + 3}}{{{u_n} + 4}}{\rm{ voi }}n \ge 1.\end{array} \right.\)
a) Lập dãy số \(\left( {{x_n}} \right)\) với \({x_n} = \dfrac{{{u_n} - 1}}{{{u_n} + 3}}.\) Chứng minh dãy số \(\left( {{x_n}} \right)\) là cấp số nhân.
b) Tìm công thức tính \({x_n},{u_n}\) theo n.
Đề bài
Hãy chọn dãy số là cấp số nhân trong các dãy số \(\left( {{u_n}} \right)\) sau :
A. \({u_n} = \dfrac{{{2^n} - 1}}{{{2^n} + 1}}\)
B. \({u_n} = 3n\)
C. \({u_n} = \dfrac{{{{\left( { - 3} \right)}^n}}}{3}\)
D. \(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \sqrt {u_n^2 + 1} \,voi\,n \ge 1\end{array} \right.\)
Đề bài
Cho cấp số nhân \(x, - 3,y, - 27\). Khi đó:
A. \(x = - 9,y = 81\)
B. \(x = 1,y = 9\)
C. \(x = 1,y = - 9\)
D. \(x = 9,y = - 15\)