Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.

Bài Tập và lời giải

Trả lời câu hỏi Bài 4 trang 17 Toán 9 Tập 2

Áp dụng quy tắc cộng đại số để biến đồi hệ (I), nhưng ở bước 1, hãy trừ từng vế hai phương trình của hệ (I) và viết ra các hệ phương trình mới thu được.

\(\left( I \right)\left\{ \matrix{2x - y = 1 \hfill \cr x + y = 2 \hfill \cr}  \right.\)

Xem lời giải

Trả lời câu hỏi Bài 4 trang 18 Toán 9 Tập 2

a) Nếu nhận xét về các hệ số của x trong hai phương trình của hệ (III).

b) Áp dụng quy tắc cộng đại số, hãy giải hệ (III) bằng cách trừ từng vế hai phương trình của (III).

Xem lời giải

Bài 20 trang 19 SGK Toán 9 tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

a) \(\left\{\begin{matrix} 3x + y =3 & & \\ 2x - y = 7 & & \end{matrix}\right.\);        b) \(\left\{\begin{matrix} 2x + 5y =8 & & \\ 2x - 3y = 0& & \end{matrix}\right.\);        

c) \(\left\{\begin{matrix} 4x + 3y =6 & & \\ 2x + y = 4& & \end{matrix}\right.\);       d) \(\left\{\begin{matrix} 2x + 3y =-2 & & \\ 3x -2y = -3& & \end{matrix}\right.\);                     

e) \(\left\{\begin{matrix} 0,3x + 0,5y =3 & & \\ 1,5x -2y = 1,5& & \end{matrix}\right.\)

Xem lời giải

Bài 21 trang 19 SGK Toán 9 tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số.

a) \(\left\{\begin{matrix} x\sqrt{2} - 3y = 1 & & \\ 2x + y\sqrt{2}=-2 & & \end{matrix}\right.\);           

b) \(\left\{\begin{matrix} 5x\sqrt{3}+ y = 2\sqrt{2}& & \\ x\sqrt{6} - y \sqrt{2} = 2& & \end{matrix}\right.\) 

Xem lời giải

Bài 22 trang 19 SGK Toán 9 tập 2

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

a) \(\left\{\begin{matrix} -5x + 2y = 4 & & \\ 6x - 3y =-7 & & \end{matrix}\right.\);           

b) \(\left\{\begin{matrix} 2x - 3y = 11& & \\ -4x + 6y = 5 & & \end{matrix}\right.\);       

c) \(\left\{\begin{matrix} 3x - 2y = 10& & \\ x - \dfrac{2}{3}y = 3\dfrac{1}{3} & & \end{matrix}\right.\)

Xem lời giải

Bài 23 trang 19 SGK Toán 9 tập 2

Giải hệ phương trình sau:

\(\left\{\begin{matrix} (1 + \sqrt{2})x+ (1 - \sqrt{2})y = 5 \ (1) & & \\ (1 + \sqrt{2})x + (1 + \sqrt{2})y = 3\ (2) & & \end{matrix}\right.\)

Xem lời giải

Bài 24 trang 19 SGK Toán 9 tập 2

Giải hệ các phương trình:

a) \(\left\{\begin{matrix} 2(x + y)+ 3(x - y)=4 & & \\ (x + y)+2 (x - y)= 5& & \end{matrix}\right.\);         

b) \(\left\{\begin{matrix} 2(x -2)+ 3(1+ y)=-2 & & \\ 3(x -2)-2 (1+ y)=-3& & \end{matrix}\right.\)

Xem lời giải

Bài 25 trang 19 SGK Toán 9 tập 2

Ta biết rằng: Một đa thức bằng đa thức \(0\) khi và chỉ khi tất cả các hệ số của nó bằng \(0\). Hãy tìm các giá trị của \(m\) và \(n\) để đa thức sau (với biến số \(x\)) bằng đa thức \(0\):

\(P(x) = (3m - 5n + 1)x + (4m - n -10)\).

Xem lời giải

Bài 26 trang 19 SGK Toán 9 tập 2

Xác định \(a\) và \(b\) để đồ thị của hàm số \(y = ax + b\) đi qua điểm \(A\) và \(B\) trong mỗi trường hợp sau:

a) \(A(2; -2)\) và \(B(-1; 3)\);       b) \(A(-4; -2)\) và \(B(2; 1)\);

c) \(A(3; -1)\) và \(B(-3; 2)\);       d) \(A(\sqrt{3}; 2)\) và \(B(0; 2)\).

Xem lời giải

Bài 27 trang 20 SGK Toán 9 tập 2

Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về  dạng hệ hai phương trình bậc nhật hai ẩn rồi giải:

a) \(\left\{\begin{matrix} \dfrac{1}{x} - \dfrac{1}{y} = 1& & \\ \dfrac{3}{x} + \dfrac{4}{y} = 5& & \end{matrix}\right.\). 

Hướng dẫn. Đặt \(u =\dfrac{1}{x},\ v =\dfrac{1}{y}\);

b) \(\left\{\begin{matrix} \dfrac{1}{x - 2} + \dfrac{1}{y -1} = 2 & & \\ \dfrac{2}{x - 2} - \dfrac{3}{y - 1} = 1 & & \end{matrix}\right.\)

Hướng dẫn. Đặt \(u = \dfrac{1}{x - 2},\ v = \dfrac{1}{y - 1}\).

Xem lời giải

Đề kiểm 15 phút - Đề số 1 - Bài 4 - Chương 3 - Đại số 9

Bài 1: Giải hệ phương trình : \(\left\{ \matrix{  2x - 3y = 2 \hfill \cr   - 5x + 2y = 3. \hfill \cr}  \right.\)

Bài 2: Tìm m để hệ phương trình sau có nghiệm duy nhất : \(\left\{ \matrix{  3x - 6y = 1 \hfill \cr  5x - my = 2. \hfill \cr}  \right.\)

 

Xem lời giải

Đề kiểm 15 phút - Đề số 2 - Bài 4 - Chương 3 - Đại số 9

Bài 1: Giải hệ phương trình : \(\left\{ \matrix{  x - 2\sqrt {2y}  = \sqrt 5  \hfill \cr  \sqrt {2x}  + y = 1 - \sqrt {10} . \hfill \cr}  \right.\)

Bài 2: Tìm a, b để hệ phương trình : \(\left\{ \matrix{  ax + by = 3 \hfill \cr  2ax - 3by = 6 \hfill \cr}  \right.\)có nghiệm là \(( 3; − 2).\)

Xem lời giải

Đề kiểm 15 phút - Đề số 3 - Bài 4 - Chương 3 - Đại số 9

Bài 1: Giải hệ phương trình : \(\left\{ \matrix{  \sqrt {2x}  + 2\sqrt {3y}  = 5 \hfill \cr  3\sqrt {2x}  - \sqrt {3y}  = {9 \over 2}. \hfill \cr}  \right.\)

Bài 2: Tìm m để hệ phương trình sau vô nghiệm : \(\left\{ \matrix{  mx + 3y = 1 \hfill \cr   - 2mx + y = 5. \hfill \cr}  \right.\)

 

Xem lời giải

Đề kiểm 15 phút - Đề số 4 - Bài 4 - Chương 3 - Đại số 9

Bài 1: Giải hệ phương trình : \(\left\{ \matrix{  \left( {1 + \sqrt 2 } \right)x + \left( {1 - \sqrt 2 } \right)y = 5 \hfill \cr  \left( {1 + \sqrt 2 } \right)x + \left( {1 + \sqrt 2 } \right)y = 3. \hfill \cr}  \right.\)

Bài 2: Tìm giá trịcủa  m để đường thẳng \(y = mx + 2\) đi qua giao điểm của hai đường thẳng (d1): \(2x +3y = 7\) và (d2) : \(3x + 2y = 13.\)

Xem lời giải

Đề kiểm 15 phút - Đề số 5 - Bài 4 - Chương 3 - Đại số 9

Bài 1: Giải hệ phương trình : \(\left\{ \matrix{  {{ - 3} \over {x - y}} + {2 \over {2x + y}} =  - 2 \hfill \cr  {4 \over {x - y}} - {{10} \over {2x + y}} = 2. \hfill \cr}  \right.\)

Bài 2: Tìm m để hệ phương trình sau có nghiệm duy nhất : \(\left\{ \matrix{  2x - y =  - 3 \hfill \cr  mx + 3 = 4. \hfill \cr}  \right.\)

 

Xem lời giải

Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”