Phân tích đa thức \(P\left( x \right) = \left( {{x^2} - 1} \right) + \left( {x + 1} \right)\left( {x - 2} \right)\) thành nhân tử.
Hãy nhớ lại một tính chất của phép nhân các số, phát biểu tiếp các khẳng định sau:
Trong một tích, nếu có một thừa số bằng \(0\) thì ...; ngược lại, nếu tích bằng \(0\) thì ít nhất một trong các thừa số của tích ...
Giải phương trình:
\(\left( {x - 1} \right)\left( {{x^2} + 3x - 2} \right) - \left( {{x^3} - 1} \right) = 0\)
Giải phương trình \(\left( {{x^3} + {x^2}} \right) + \left( {{x^2} + x} \right) = 0\).
Giải các phương trình:
a) \((3x - 2)(4x + 5) = 0\);
b) \((2,3x - 6,9)(0,1x + 2) = 0\);
c) \(\left( {4x + 2} \right)\left( {{x^2} + 1} \right) = 0\);
d) \((2x + 7)(x - 5)(5x + 1) = 0\);
Bằng cách phân tích vế trái thành nhân tử, giải các phương trình sau:
a) \(2x(x - 3) + 5(x - 3) = 0\)
b) \(\left( {{x^2} - 4} \right) + \left( {x - 2} \right)\left( {3 - 2x} \right) = 0\)
c) \({x^3} - 3{x^2} + 3x - 1 = 0\)
d) \(x(2x - 7) - 4x + 14 = 0\)
e) \({\left( {2x - 5} \right)^2} - {\left( {x + 2} \right)^2} = 0\)
f) \({x^2} - x - \left( {3x - 3} \right) = 0\)
Giải các phương trình:
a) \(x\left( {2x - 9} \right) = 3x\left( {x - 5} \right)\)
b) \(0,5x\left( {x - 3} \right) = \left( {x - 3} \right)\left( {1,5x - 1} \right)\)
c) \(3x - 15 = 2x\left( {x - 5} \right)\)
d) \(\dfrac{3}{7}x - 1 = \dfrac{1}{7}x\left( {3x - 7} \right).\)
Giải các phương trình:
a) \(\left( {{x^2} - 2x + 1} \right) - 4 = 0\)
b) \({x^2} - x = - 2x + 2\)
c) \(4{x^2} + 4x + 1 = {x^2}\)
d) \({x^2} - 5x + 6 = 0\)
Giải các phương trình:
a) \(2{x^3} + 6{x^2} = {x^2} + 3x;\)
b) \(\left( {3x - 1} \right)\left( {{x^2} + 2} \right) = \left( {3x - 1} \right)\left( {7x - 10} \right)\)
TRÒ CHƠI (chạy tiếp sức)
Chuẩn bị:
Giáo viên chia lớp thành n nhóm, mỗi nhóm gồm 4 em sao cho các nhóm đều có em học sinh giỏi, học khá, học trung bình,… Mỗi nhóm tự đặt cho nhóm mình một cái tên, chẳng hạn, nhóm “Con Nhím”, nhóm “Ốc nhồi”, nhóm “Đoàn Kết”, … Trong mỗi nhóm, học sinh tự đánh số từ 1 đến 4. Như vậy sẽ có n học sinh số 1, n học sinh số 2,…
Giáo viên chuẩn bị 4 đề toán về giải phương trình, đánh số từ 1 đến 4. Mỗi đề toán được photo coppy thành n bản và cho mỗi bản một phong bì riêng. Như vậy sẽ có n bì chứa đề toán số 1, n bì chứa đề toán số 2,… Các đề toán được chọn theo nguyên tắc sau:
Đề số 1 chứa x; đề số 2 chứa x và y; đề số 3 chứa y và z; đề số 4 chứa z và t. (Xem bộ đề mẫu dưới đây).
Đề số 1: Giải phương trình \(2(x-2)+1=x-1\)
Đề số 2: Thế giá trị của x (bạn số 1 vừa tìm được) vào rồi tìm y trong phương trình \((x+3)y=x+y\)
Đề số 3: Thế giá trị của \(y\) (bạn số 2 vừa tìm được) vào rồi tìm \(z\) trong phương trình \(\dfrac{1}{3} + \dfrac{{3z + 1}}{6} = \dfrac{{3y + 1}}{3}\)
Đề số 4: Thế giá trị của \(z\) (bạn số 3 vừa tìm được) vào rồi tìm \(t\) trong phương trình
\(z\left( {{t^2} - 1} \right) = \dfrac{1}{3}\left( {{t^2} + t} \right)\) với điều kiện \(t>0\).
Cách chơi:
Tổ chức mỗi nhóm học sinh ngồi theo hàng dọc, hàng ngang, hay vòng tròn quanh một cái bàn, tùy điều kiện riêng của lớp
Giáo viên phát đề số 1 cho học sinh số 1 của các nhóm, đề số 2 cho học sinh số 2,…
Khi có khẩu lệnh, học sinh số 1 của các nhóm nhanh chóng mở đề số 1, giải rồi chuyển giá trị x tìm được cho bạn số 2 của nhóm mình. Khi nhận được giá trị x đó, học sinh số 2 mới được phép mở đề, thay giá trị của x vào, giải phương trình để tìm y rồi chuyển đáp số cho bạn số 3 của nhóm mình. Học sinh số 3 cũng làm tương tự… Học sinh số 4 chuyển giá trị tìm được của t cho giáo viên (đồng thời là giám khảo).
Nhóm nào nộp kết quả đúng đầu tiên thì thắng cuộc.
TRÒ CHƠI (chạy tiếp sức)
Chuẩn bị:
Giáo viên chia lớp thành n nhóm, mỗi nhóm gồm 4 em sao cho các nhóm đều có em học sinh giỏi, học khá, học trung bình,… Mỗi nhóm tự đặt cho nhóm mình một cái tên, chẳng hạn, nhóm “Con Nhím”, nhóm “Ốc nhồi”, nhóm “Đoàn Kết”, … Trong mỗi nhóm, học sinh tự đánh số từ 1 đến 4. Như vậy sẽ có n học sinh số 1, n học sinh số 2,…
Giáo viên chuẩn bị 4 đề toán về giải phương trình, đánh số từ 1 đến 4. Mỗi đề toán được photo coppy thành n bản và cho mỗi bản một phong bì riêng. Như vậy sẽ có n bì chứa đề toán số 1, n bì chứa đề toán số 2,… Các đề toán được chọn theo nguyên tắc sau:
Đề số 1 chứa x; đề số 2 chứa x và y; đề số 3 chứa y và z; đề số 4 chứa z và t. (Xem bộ đề mẫu dưới đây).
Cách chơi:
Tổ chức mỗi nhóm học sinh ngồi theo hàng dọc, hàng ngang, hay vòng tròn quanh một cái bàn, tùy điều kiện riêng của lớp
Giáo viên phát đề số 1 cho học sinh số 1 của các nhóm, đề số 2 cho học sinh số 2,…
Khi có khẩu lệnh, học sinh số 1 của các nhóm nhanh chóng mở đề số 1, giải rồi chuyển giá trị x tìm được cho bạn số 2 của nhóm mình. Khi nhận được giá trị x đó, học sinh số 2 mới được phép mở đề, thay giá trị của x vào, giải phương trình để tìm y rồi chuyển đáp số cho bạn số 3 của nhóm mình. Học sinh số 3 cũng làm tương tự… Học sinh số 4 chuyển giá trị tìm được của t cho giáo viên (đồng thời là giám khảo).
Nhóm nào nộp kết quả đúng đầu tiên thì thắng cuộc.