a) \(H\) là hình chiếu của \(O\) trên mp \((ABC)\) nên \(OH ⊥ (ABC) \Rightarrow OH ⊥ BC\). (1)
Mặt khác: \(OA ⊥ OB\), \(OA ⊥ OC\)
\(\Rightarrow OA ⊥ (OBC) \Rightarrow OA ⊥ BC\) (2)
Từ (1) và (2) suy ra \(BC ⊥ (AOH) \Rightarrow BC ⊥ AH\). Chứng minh tương tự ta được \(AB ⊥ CH \)
\(\Rightarrow H\) là trực tâm của tam giác \(ABC\).
b) Trong mặt phẳng \((ABC)\) gọi \(E = AH ∩ BC\), \(OH ⊥ (ABC)\), \(AE ⊂ (ABC) \Rightarrow OH ⊥ AE\) tại \(H\); tức là \(OH\) là đường cao của tam giác vuông \(OAE\).
\(BC \bot \left( {OAH} \right) \Rightarrow BC \bot OE \Rightarrow OE\) là đường cao của tam giác vuông \(OBC\).
Do đó: \(\dfrac{1}{OH^{2}}=\dfrac{1}{OA^{2}}+\dfrac{1}{OE^{2}} =\dfrac{1}{OA^{2}}+\dfrac{1}{OB^{2}}+\dfrac{1}{OC^{2}}.\)
Nhận xét: Biểu thức này là mở rộng của công thức tính đường cao thuộc cạnh huyền của tam giác vuông: \(\dfrac{1}{h^{2}}=\dfrac{1}{b^{2}}+\dfrac{1}{c^{2}} .\)