Bài 4 trang 113 SGK Giải tích 12

Sử dụng phương pháp tích phân từng phần, hãy tính tích phân:

a)\(\int_{0}^{\frac{\pi}{2}}(x+1)sinxdx\)   ;      b) \(\int_{1}^{e}x^{2}lnxdx\)

c)\(\int_{0}^{1}ln(1+x)dx\)      ;       d)\(\int_{0}^{1}(x^{2}-2x-1)e^{-x}dx\)

Lời giải

a) Đặt \(\left\{ \begin{array}{l}u = x + 1\\dv = \sin xdx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \cos x\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^{\frac{\pi }{2}} {\left( {x + 1} \right)\sin xdx} = \left. { - \left( {x + 1} \right)\cos x} \right|_0^{\frac{\pi }{2}} + \int\limits_0^{\frac{\pi }{2}} {\cos xdx} \\= \left. { - \left( {x + 1} \right)\cos x} \right|_0^{\frac{\pi }{2}} + \left. {\sin x} \right|_0^{\frac{\pi }{2}}\\= 1 + 1 = 2\end{array}\).

b) Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = {x^2}dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \frac{{dx}}{x}\\v = \frac{{{x^3}}}{3}\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_1^e {{x^2}\ln x} dx = \left. {\left( {\ln x.\frac{{{x^3}}}{3}} \right)} \right|_1^e - \frac{1}{3}\int\limits_1^e {{x^2}dx} \\= \left. {\left( {\ln x.\frac{{{x^3}}}{3}} \right)} \right|_1^e - \left. {\frac{{{x^3}}}{9}} \right|_1^e\\= \frac{{{e^3}}}{3} - \left( {\frac{{{e^3}}}{9} - \frac{1}{9}} \right) = \frac{{2{e^3}}}{9} + \frac{1}{9} = \frac{1}{9}\left( {2{e^3} + 1} \right)\end{array}\)

c) Đặt \(\left\{ \begin{array}{l}u = \ln \left( {1 + x} \right)\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{dx}}{{1 + x}}\\v = x\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {\ln \left( {x + 1} \right)dx} = \left. {\left( {x.\ln \left( {1 + x} \right)} \right)} \right|_0^1 - \int\limits_0^1 {\frac{x}{{x + 1}}dx} \\= \left. {\left( {x.\ln \left( {1 + x} \right)} \right)} \right|_0^1 - \int\limits_0^1 {\frac{{x + 1 - 1}}{{x + 1}}dx} \\= \left. {\left( {x.\ln \left( {1 + x} \right)} \right)} \right|_0^1 - \int\limits_0^1 {\left( {1 - \frac{1}{{x + 1}}} \right)dx} \\= \left. {\left( {x.\ln \left( {1 + x} \right)} \right)} \right|_0^1 - \left. {\left( {x - \ln \left| {x + 1} \right|} \right)} \right|_0^1\\= \ln 2 - \left( {1 - \ln 2} \right) = 2\ln 2 - 1\end{array}\)

d) Đặt \(\left\{ \begin{array}{l}u = {x^2} - 2x + 1\\dv = {e^{ - x}}dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \left( {2x - 2} \right)dx\\v = - {e^{ - x}}\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {\left( {{x^2} - 2x - 1} \right){e^{ - x}}dx} = \left. { - {e^{ - x}}\left( {{x^2} - 2x - 1} \right)} \right|_0^1 + 2\int\limits_0^1 {\left( {x - 1} \right){e^{ - x}}dx} \\= \left. { - {e^{ - x}}\left( {{x^2} - 2x - 1} \right)} \right|_0^1 + 2{I_1}\\= 2{e^{ - 1}} - 1 + 2{I_1}\end{array}\)

Đặt \(\left\{ \begin{array}{l}u = x - 1\\dv = {e^{ - x}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\dv = - {e^{ - x}}\end{array} \right.\).

\(\begin{array}{l}\Rightarrow {I_1} = \left. { - {e^{ - x}}\left( {x - 1} \right)} \right|_0^1 + \int\limits_0^1 {{e^{ - x}}dx} \\= \left. { - {e^{ - x}}\left( {x - 1} \right)} \right|_0^1\left. { - {e^{ - x}}} \right|_0^1\\= - 1 - \left( {{e^{ - 1}} - 1} \right) =- {e^{ - 1}}\end{array}\).

Vậy \(I = 2{e^{ - 1}} - 1 - 2{e^{ - 1}} =  - 1\).


Bài Tập và lời giải

Trả lời gợi ý Bài 17 trang 47 SGK GDCD lớp 8

a)   Em hãy cho biết ý kiến nào đúng, ý kiến nào sai ? Vì sao ? Ở trường hợp Lan, em sẽ xử lí thế nào ?


Xem lời giải

Giải bài tập Bài 17 trang 49 SGK GDCD lớp 8

1. Giờ ra chơi, các bạn nam lớp 8B rủ nhau đá bóng trong sân trường. Đang hăng say, Hùng sút mạnh, quả bóng bay chệch về phía lớp học làm vỡ cửa kính. Thấy thế cả đám liền bỏ chạy. Em hãy nêu ý kiến của mình về việc làm của các bạn nam lớp 8B.


Xem lời giải