Yêu cầu của bài toán này là kiểm chứng định lí Vi-ét đối với phương trình bậc hai trên tập số phức.
+) Trường hợp \(∆ ≥ 0\), theo định lí vi-ét ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{b}{a}\\{z_1}{z_2} = \dfrac{c}{a}\end{array} \right.\)
+) Trường hợp \(∆ < 0\), gọi \(\delta\) là một căn bậc hai của \(\Delta\), khi đó các nghiệm của phương trình là:
\(\begin{array}{l}{z_1} = \dfrac{{ - b + \delta }}{{2a}};\,\,{z_2} = \dfrac{{ - b - \delta }}{{2a}}\\\Rightarrow {z_1} + {z_2} = \dfrac{{ - b + \delta - b - \delta }}{{2a}} = \dfrac{{ - b}}{a}\\\,\,\,\,\,\,\,{z_1}{z_2} = \dfrac{{\left( { - b + \delta } \right)\left( { - b - \delta } \right)}}{{4{a^2}}} = \dfrac{{{b^2} - {\delta ^2}}}{{4{a^2}}}= \dfrac{{{b^2} - \left( {{b^2} - 4ac} \right)}}{{4{a^2}}} = \dfrac{{4ac}}{{4{a^2}}} = \dfrac{c}{a}\end{array}\)
Vậy kết quả của định lí Vi-et vẫn đúng trong trường hợp \(∆ < 0\).