Bài 4 trang 165 SGK Vật lí 12

Nếu ánh sáng kích thích là ánh sáng màu lam thì ánh sáng huỳnh quang không thể là ánh sáng nào dưới đây?

A. Ánh sáng đỏ.

B. Ánh sáng lục.

C. Ánh sáng lam.

D. Ánh sáng chàm.

Lời giải

Đáp án D.

λlam > λchàm => ánh sáng huỳnh quang không thể là ánh sáng chàm.


Bài Tập và lời giải

Đề kiểm tra 15 phút - Chương 1 - Đề số 1 - Hình học 10

Câu 1. Cho tam giác ABC vuông tại A có trọng tâm là G. Biết rằng AB=6 và AC=8. Tính độ dài của các véc tơ \(\overrightarrow {GB}  - \overrightarrow {GC} \) và \(\overrightarrow {GB}  + \overrightarrow {GC} \).

Câu 2. Cho hai hình bình hành ABCD và AMNP có chung đỉnh A. Chứng minh rằng \(\overrightarrow {BM}  + \overrightarrow {DP}  = \overrightarrow {CN} \).

Câu 3. Cho hình bình hành ABCD tâm O. Gọi G là trọng tâm tam giác OCD. Hãy biểu thị \(\overrightarrow {BG} \) theo các véc tơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).

Xem lời giải

Đề kiểm tra 15 phút - Chương 1 - Đề số 2 - Hình học 10

Chọn phương án đúng

Câu 1. Cho tam giác ABC với M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. Véc tơ đối của véc tơ \(\overrightarrow {MN} \)là

A.\(\overrightarrow {BP} \)                          

B.\(\overrightarrow {MA} \)                          

C.\(\overrightarrow {PC} \)                       

D.\(\overrightarrow {PB} \)

Câu 2. Cho ba điểm A, B, C phân biệt. Đẳng thức nào sau đây là sai ?

A.\(\overrightarrow {AB}  - \overrightarrow {BC}  = \overrightarrow {AC} \)          

B.\(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

C.\(\overrightarrow {BC}  + \overrightarrow {AB}  = \overrightarrow {AC} \)

D.\(\overrightarrow {BC}  - \overrightarrow {BA}  = \overrightarrow {AC} \)

Câu 3. Cho hình bình hành ABCD có tâm O. Khi đó ta có

A.\(\overrightarrow {AO}  - \overrightarrow {BO}  = \overrightarrow {BA} \) 

B.\(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {BA} \)

C.\(\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow {AB} \)

D.\(\overrightarrow {AO}  + \overrightarrow {BO}  = \overrightarrow {AB} \)

Câu 4. Cho hình vuông ABCD. Khi đó ta có

A.\(\overrightarrow {AB}  =  - \overrightarrow {BC} \)            

B.\(\overrightarrow {AD}  =  - \overrightarrow {BC} \)                

C.\(\overrightarrow {AC}  =  - \overrightarrow {BD} \)            

D.\(\overrightarrow {AD}  =  - \overrightarrow {CB} \)

Câu 5. Cho hai điểm phân biệt M, N. Điều kiện cần và đủ để P là trung điểm của đoạn MN là

A\(\overrightarrow {PM}  =  - \overrightarrow {PN} \)            

B.\( PM=PN\)                       

C.\(\overrightarrow {PM}  = \overrightarrow {PN} \)               

D.\(\overrightarrow {MP}  = \overrightarrow {NP} \)

Câu 6. Cho G là trọng tâm của tam giác ABC và M là trung điểm của đoạn BC. Đẳng thức nào sau đây sai ?

A.\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

B.\(\overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM} \)

C.\(\overrightarrow {GB}  + \overrightarrow {GC}  = 2\overrightarrow {GM} \)

D.\(\overrightarrow {BM}  + \overrightarrow {MC}  = \overrightarrow 0 \)

Câu 7. Gọi I là giao điểm của hai đường chéo của hình bình hành ABCD. Khi đó

A.\(\overrightarrow {AI}  = \dfrac{1 }{ 2}\overrightarrow {AB}  + \dfrac{1 }{ 2}\overrightarrow {AC} \)

B.\(\overrightarrow {AI}  = \dfrac{1 }{3}\overrightarrow {AB}  + \dfrac{1 }{3}\overrightarrow {AD} \)

C.\(\overrightarrow {AI}  = \dfrac{1 }{2}\overrightarrow {AB}  + \dfrac{1 }{ 2}\overrightarrow {AD} \)

D.\(\overrightarrow {AI}  = \dfrac{1 }{ 2}\overrightarrow {AB}  + \overrightarrow {BI} \)

Câu 8. Cho tam giác ABC. Gọi M là điểm trên đoạn BC sao cho MB = 2MC.

Khi đó

A.\(\overrightarrow {AM}  = dfrac{1 }{ 3}\overrightarrow {AB}  + \overrightarrow {AC} \)

B.\(\overrightarrow {AM}  = \dfrac{1 }{3}\overrightarrow {AB}  + \dfrac{2 }{ 3}\overrightarrow {AC} \)

C.\(\overrightarrow {AM}  = \dfrac{1 }{3}\overrightarrow {AB}  + \dfrac{1 }{ 3}\overrightarrow {AC} \)

D.\(\overrightarrow {AM}  = \dfrac{1 }{3}\overrightarrow {AB}  + 2\overrightarrow {AC} \)

Câu 9. Cho tam giác đều ABC có cạnh bằng a, M là trung điểm của BC. Véc tơ \(\overrightarrow {CA}  - \overrightarrow {MC} \) có độ lớn là

A.\(\dfrac{{3a}}{2}\)

B. \(\dfrac{a}{2}\)

C. \(\dfrac{{2a\sqrt 3 }}{3}\)

D. \(\dfrac{{a\sqrt 7 }}{2}\)

Câu 10. Cho tam giác ABC vuông tại B có AB = 3cm, BC = 4cm. Độ dài của véctơ tổng \(\overrightarrow {AB}  + \overrightarrow {AC} \) là

A.\(\sqrt {13} \)cm   

B. \(13\) cm                      

C. \(2\sqrt {13} \) cm 

D. \(26\) cm

Xem lời giải

Đề kiểm tra 15 phút - Chương 1 - Đề số 3 - Hình học 10

Câu 1. Cho tam giác ABC vuông tại B có trọng tâm là G. Biết rằng \(AB = 3\) và \(AC = 5\). Tính độ dài của các véctơ \(\overrightarrow {GB}  - \overrightarrow {GC} \) và \(\overrightarrow {GB}  + \overrightarrow {GC} \).

Câu 2. Cho tam giác ABC có trọng tâm G. Gọi E và F là các điểm xác định bởi \(\overrightarrow {AE}  = 2\overrightarrow {AB} \) và \(\overrightarrow {AF}  = \dfrac{2 }{ 5}\overrightarrow {AC} \)

a.Hãy biểu diễn các véctơ \(\overrightarrow {GE} \) và \(\overrightarrow {GF} \)theo các véctơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \).

b.Chứng minh ba điểm G, E, F thẳng hàng.

Câu 3. Cho tam giác ABC và một đường thẳng \(\Delta \). Tìm trên \(\Delta \) điểm M sao cho véctơ \(2\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} \)có độ dài ngắn nhất.

Xem lời giải

Đề kiểm tra 15 phút - Chương 1 - Đề số 4 - Hình học 10

Chọn phương án đúng

Câu 1. Cho tam giác đều ABC có cạnh bằng a. Độ dài của véctơ \(\overrightarrow {BA}  + \overrightarrow {BC} \) là

A.2a                         

B.\({{a\sqrt 3 } \over 2}\)                            

C.a                           

D.\(a\sqrt 3 \)

Câu 2. Cho tam giác ABC vuông tại A có AB=6, AC=8. Độ dài của véctơ \(\overrightarrow {BA}  + \overrightarrow {BC} \) là

A.\(2\sqrt 3 \)                      

B.10                                

C.\(4\sqrt {13} \)                    

D.16

Câu 3. Cho tam giác đều ABC có cạnh bằng 3. Gọi I là trung điểm của BC. Độ dài véctơ \(\overrightarrow {CA}  - \overrightarrow {IC} \) là

A.\(\dfrac{3 }{ 2}\)                          

B. \(\dfrac{3\sqrt 7 } {2}\)                         

C.\(2\sqrt 3 \)                      

D.\(\dfrac{9 }{ 2}\)

Câu 4. Cho tam giác ABC vuông tại A có BC = 15. Gọi G là trọng tâm. Độ dài của véctơ \(\overrightarrow {GB}  + \overrightarrow {GC} \) là

A.10                          B.5

C.15                          D.20

Câu 5. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AB, CD. Tìm mệnh đề sai

A.\(\overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {MN} \)

B. \(\overrightarrow {AC}  + \overrightarrow {DB}  = 2\overrightarrow {MN} \)

C.\(\overrightarrow {AD}  + \overrightarrow {BC}  = 2\overrightarrow {MN} \) 

D. \(\overrightarrow {CA}  - \overrightarrow {BD}  = 2\overrightarrow {NM} \)

Câu 6. Cho lục giác ABCDEF. Tìm mệnh đề đúng

A.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CD} \)

B.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CE} \)

C.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AD}  + \overrightarrow {BF}  + \overrightarrow {CF} \)

D.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} \)

Câu 7. Cho tam giác OAB. Gọi M, N lần lượt là trung điểm OA, OB . Tìm mệnh đề đúng

A.\(\overrightarrow {MN}  = \dfrac{1 }{ 2}\overrightarrow {OA}  + \dfrac{1 }{ 2}\overrightarrow {OB} \)

B. \(\overrightarrow {MN}  = \dfrac{1}{2}\overrightarrow {OB}  - \dfrac{1 }{ 2}\overrightarrow {OA} \)

C. \(\overrightarrow {MN}  = \dfrac{1}{2}\overrightarrow {OA}  - \dfrac{1 }{2}\overrightarrow {OB} \)   

D.\(\overrightarrow {MN}  = \overrightarrow {OA}  + \overrightarrow {OB} \)

Câu 8. Cho  hình bình hành ABCD. Gọi G là trọng tâm tam giác ABC. Tìm mệnh đề sai

A.\(\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = 3\overrightarrow {DG} \)

B.\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GD}  = \overrightarrow {CD} \)

C.\(\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow {DG} \)          

D.\(\overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow {BD} \)

Câu 9. Cho hình bình hành ABCD và \(AB'C'D'\) có chung đỉnh A. Tìm mệnh đề đúng

A.\(BCC'B'\) là hình bình hành                      

B.\(\overrightarrow {CC'}  = \overrightarrow {BB'}  + \overrightarrow {DD'} \)

C.\(C{\rm{DD}}'C'\) là hình bình hành    

D.\(\overrightarrow {AC}  = \overrightarrow {AC'} \)

Câu 10. Tam giác ABC là tam giác gì nếu thỏa mãn điều kiện \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AB}  - \overrightarrow {AC} } \right|\) ?

A.Vuông                 B. Cân      

C. Đều                   D. Nhọn   

Xem lời giải