Bài 4 trang 169 SGK Đại số và Giải tích 11

Tìm đạo hàm của các hàm số sau:

\(\begin{array}{l}a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\b)\,\,y = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\d)\,y = {\tan ^2}x - {\cot}{x^2}\\e)\,\,y = \cos \dfrac{x}{{1 + x}}\end{array}\)

Lời giải

\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\y' = \left( {9 - 2x} \right)'\left( {2{x^3} - 9{x^2} + 1} \right) \\+ \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)'\\
= - 2\left( {2{x^3} - 9{x^2} + 1} \right) + \left( {9 - 2x} \right)\left( {6{x^2} - 18x} \right)\\
= - 4{x^3} + 18{x^2} - 2 + 54{x^2} - 162x - 12{x^3} + 36{x^2}\\
= - 16{x^3} + 108{x^2} - 162x - 2\\
b)\,\,y = \left( {6\sqrt x - \frac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\y' = \left( {6\sqrt x  - \frac{1}{{{x^2}}}} \right)'\left( {7x - 3} \right) \\+ \left( {6\sqrt x  - \frac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)'\\
= \left( {\frac{3}{{\sqrt x }} + \frac{2}{{{x^3}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x - \frac{1}{{{x^2}}}} \right)\\
= 21\sqrt x - \frac{9}{{\sqrt x }} + \frac{{14}}{{{x^2}}} - \frac{6}{{{x^3}}} + 42\sqrt x - \frac{7}{{{x^2}}}\\
= \frac{{ - 6}}{{{x^3}}} + \frac{7}{{{x^2}}} + 63\sqrt x - \frac{9}{{\sqrt x }}\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\y' = \left( {x - 2} \right)'\sqrt {{x^2} + 1}  + \left( {x - 2} \right)\left( {\sqrt {{x^2} + 1} } \right)'\\
 = \sqrt {{x^2} + 1} + \left( {x - 2} \right)\frac{x}{{\sqrt {{x^2} + 1} }}\\
 = \frac{{{x^2} + 1 + {x^2} - 2x}}{{\sqrt {{x^2} + 1} }}\\
= \frac{{2{x^2} - 2x + 1}}{{\sqrt {{x^2} + 1} }}\\
d)\,y = {\tan ^2}x - \cot {x^2}\\y' = 2\tan x.\left( {\tan x} \right)' - \left( {\cot {x^2}} \right)'\\
= 2\tan x.\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
 = \dfrac{{2\sin x}}{{{{\cos }^3}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
e)y = \cos \dfrac{x}{{1 + x}}\\y' = \left( {\dfrac{x}{{x + 1}}} \right)'.\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\
= - \sin \dfrac{x}{{1 + x}}.\left( {\dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}} \right)\\
= - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}.\sin \dfrac{x}{{1 + x}}
\end{array}\)