Bài 4 trang 203 SGK Sinh 12

Hãy mô tả lại dòng năng lượng trong hệ sinh thái, minh hoạ trong hình 45.4.

Lời giải

Dòng năng lượng trong hệ sinh thái, minh hoạ trong hình 45.4 SGK:

- Sinh vật sản xuất (một phần năng lượng tiêu hao qua hố hấp, rụng lá cây). Động vật ăn cỏ (một phần năng lượng tiêu hao qua hô hấp của động vật, bài tiết, thải qua phân...)- Động vật ăn thịt bậc I (một phần năng lượng tiêu hao qua hô hấp của động vật, bài tiết, thải qua phân...). Động vật ăn thịt bậc 2 (một phần năng lượng tiêu hao qua hô hấp cùa động vật, bài tiết, thải qua phân...).

- Ở tất cả các bâc dinh dưỡng, các sản phẩm hữu cơ như xác sinh vật chết, lá cây rụng và phân,— được sinh vật phân giải thành các chất vô cơ.


Bài Tập và lời giải

Bài 51 trang 166 SBT toán 8 tập 1
Cho tam giác \(ABC\) với ba đường cao \(AA’,\, BB’,\ CC’.\) Gọi \(H\) là trực tâm của tam giác đó.Chứng minh rằng: \(\eqalign{{HA'} \over {AA'}} + \eqalign{{HB'} \over {BB'}} +\eqalign {{HC'} \over {CC'}} = 1\)

Xem lời giải

Bài 52 trang 166 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC\)

a) Tính tỉ số các đường cao \(BB’\) và \(CC’\) xuất phát từ các đỉnh \(B\) và \(C\)

b) Tại sao nếu \(AB < AC\) thì \(BB’ < CC’ ?\)

Xem lời giải

Bài 53 trang 166 SBT toán 8 tập 1

Đề bài

Qua tâm \(O\) của hình vuông \(ABCD\) cạnh \(a,\) kẻ đường thẳng \(l\) cắt cạnh \(AB\) và \(CD\) lần lượt tại \(M\) và \(N.\) Biết \(MN = b.\) Hãy tính tổng các khoảng cách từ các đỉnh của hình vuông đến đường thẳng \(l\) theo \(a\) và \(b\) (\(a\) và \(b\) có cùng đơn vị đo)

Xem lời giải

Bài 54 trang 166 SBT toán 8 tập 1

Đề bài

Tam giác \(ABC\) có hai trung tuyến \(AM\) và \(BN\) vuông góc với nhau. Hãy tính diện tích tam giác đó theo \(AM\) và \(BN\)

Xem lời giải

Bài 55 trang 166 SBT toán 8 tập 1

Đề bài

Cho hình bình hành \(ABCD.\) Gọi \(K\) và \(L\) là hai điểm thuộc cạnh \(BC\) sao cho \(BK = KL = LC.\) Tính tỉ số diện tích của :

a) Các tam giác \(DAC\) và \(DCK\)

b) Tam giác \(DAC\) và tứ giác \(ADLB\)

c) Các tứ giác \(ABKD\) và \(ABLD\)

Xem lời giải

Bài 56 trang 166 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC\) vuông ở \(A\) và có \(BC = 2 AB = 2a.\) Ở phía ngoài tam giác, ta vẽ hình vuông \(BCDE,\) tam giác đều \(ABF\) và tam giác đều \(ACG.\)a) Tính các góc \(B,\, C,\) cạnh \(AC\) và diện tích tam giác \(ABC.\)b) Chứng minh rằng \(FA\) vuông góc với \(BE\) và \(CG.\) Tính diện tích các tam giác \(FAG\) và \(FBE.\)c) Tính diện tích tứ giác \(DEFG.\)

Xem lời giải

Bài 2.1 phần bài tập bổ sung trang 166 SBT toán 8 tập 1
Cho hình bình hành \(ABCD,\) hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(O.\) Xét các tam giác có đỉnh lấy trong số các điểm \(A, B, C, D, O,\) hãy chỉ ra các tam giác có diện tích bằng nhau và giải thích vì sao.

Xem lời giải

Bài 2.2 phần bài tập bổ sung trang 166 SBT toán 8 tập 1

Đề bài

Cho lục giác \(ABCDEF,\) có \(AB = BC\) \(= 3\, cm\) và\( ED = 4 \,cm.\) Biết rằng \(ED\) song song với \(AB,\, AB\) vuông góc với \(BC, \,FE\) vuông góc với \(FA\) và \(FE = FA.\) Qua điểm \(A\) kẻ đường thẳng \(d\) song song với \(BC.\) Gọi \(K\) là giao điểm của \(d\) và \(ED,\) biết \(AK = 4\,cm,\, KD = 1\,cm.\) Tính diện tích của lục giác đó.

Xem lời giải

Bài 2.3 phần bài tập bổ sung trang 167 SBT toán 8 tập 1

Đề bài

Cho lục giác đều \(MNPQRS.\) Gọi \(X,\, Y,\, Z\) tương ứng là trung điểm của cạnh \(MN,\, PQ,\, RS.\) Khi đó \(XYZ\) là:

(A) tam giác vuông;

(B) tam giác vuông cân;

(C) tam giác đều;

(D) tam giác mà độ dài các cạnh của nó đôi một khác nhau.

Xem lời giải

Bài 2.4 phần bài tập bổ sung trang 167 SBT toán 8 tập 1

Đề bài

Cho tứ giác \(MNPQ\) và các kích thước đã cho trên hình bs.28. Diện tích tam giác \(MQP\) bằng bao nhiêu \((cm^2)?\)

(A) \(6;\)

(B) \(25;\)

(C) \(\dfrac{25}{2}\)

(D) \(\dfrac{25}{4}\)

 

Xem lời giải

Bài 2.5 phần bài tập bổ sung trang 167 SBT toán 8 tập 1

Đề bài

Cho hình bs.29, trong đó \(HK = KF = FL = LT\) và tam giác \(GHT\) có diện tích \(S.\) Khi đó, diện tích của tam giác \(GKL\) bằng:

(A) \(\dfrac {1}{2}S\)

(B) \(\dfrac {1}{4}S\)

(C) \(\dfrac {1}{8}S\)

(D) \(\dfrac {3}{4}S\)

Xem lời giải

Bài 2.6 phần bài tập bổ sung trang 167 SBT toán 8 tập 1

Đề bài

Cho hình bs.30 (hình bình hành \(MNPQ\) có diện tích \(S\) và \(X,\, Y\) tương ứng là trung điểm của các cạnh \(QP, PN).\) Khi đó, diện tích của tứ giác \(MXPY\) bằng:

(A) \(\dfrac {1}{4}S\)

(B) \(\dfrac {1}{2}S\)

(C) \(\dfrac {1}{8}S\)

(D) \(\dfrac {3}{4}S\)

Xem lời giải

Bài 2.7 phần bài tập bổ sung trang 168 SBT toán 8 tập 1

Đề bài

Cho hình bs.31, (\(R\) là điểm bất kì trên \(QP,\, S\) là điểm bất kì trên \(NO,\) hình thang \(NOPQ\) có diện tích \(S\)). Khi đó tổng diện tích của hai tam giác \(QSP\) và \(NRO\) bằng:

(A) \(\dfrac {1}{2}S\)

(B) \(\dfrac {1}{4}S\)

(C) \(\dfrac {3}{4}S\)

(D) \(S\)

Xem lời giải

Bài 2.8 phần bài tập bổ sung trang 168 SBT toán 8 tập 1

Đề bài

Cho tam giác \(MNP.\) Điểm \(T\) nằm trong tam giác \(MNP\) sao cho các tam giác \(MNP\) sao cho các tam giác \(TMN,\, TMP,\, TPN\) có diện tích bằng nhau. Khi đó, \(T\) là giao điểm

(A) ba đường cao của tam giác đó

(B) ba đường trung trực của tam giác đó

(C) ba đường trung tuyến của tam giác đó

(D) ba đường phân giác trong của tam giác đó

Xem lời giải

Bài 2.9 phần bài tập bổ sung trang 168 SBT toán 8 tập 1

Đề bài

Cho hình bs.32 (tam giác \(MNP\) vuông tại đỉnh \(M\) và \(NRQP,\, PUTM,\, MKHN\) đều là hình vuông, còn \(S_1,\, S_2,\,S_3\) tương ứng là diện tích của mỗi hình. Quan hệ nào sau đây là đúng?

(A) \(S_3+S_2=S_1\)

(B) \({S_3}^2+{S_2}^2={S_1}^2\)

(C) \(S_3+S_2>S_1\)

(D) \({S_3}^2+{S_2}^2<{S_1}^2\)

Xem lời giải

Bài 2.10 phần bài tập bổ sung trang 169 SBT toán 8 tập 1

Đề bài

Nếu độ dài của một hình vuông tăng gấp 4 lần thì diện tích hình vuông đó tăng lên bao nhiêu lần?

(A) \(4\)

(B) \(8\)

(C) \(16\)

(D) Không tính được

Xem lời giải

Bài 2.11 phần bài tập bổ sung trang 169 SBT toán 8 tập 1

Đề bài

Nếu một hình chữ nhật có chu vi là \(16\, (cm)\) và diện tích là \(12\, (cm^2)\) thì độ dài hai cạnh của nó bằng bao nhiêu?

(A) \(3\, (cm)\) và \(4\,(cm)\)

(B) \(2\, (cm)\) và \(6\,(cm)\)

(C) \(2\, (cm)\) và \(8\,(cm)\)

(D) Không tính được

Xem lời giải