Cho hình chóp \(S.ABCD\). Gọi \(A_1\) là trung điểm của cạnh \(SA\) và \(A_2\) là trung điểm của đoạn \(AA_1\). Gọi \((α)\) và \((β)\) là hai mặt phẳng song song với mặt phẳng \((ABCD)\) và lần lượt đi qua \(A_1,A_2\). Mặt phẳng \((α)\) cắt các cạnh \(SB, SC, SD\) lần lượt tại \(B_1, C_1, D_1\). Mặt phẳng \((β)\) cắt các cạnh \(SB, SC, SD\) lần lượt tại \(B_2, C_2, D_2\). Chứng minh:
a) \(B_1, C_1, D_1\) lần lượt là trung điểm của các cạnh \(SB, SC, SD\).
b) \(B_1B_2 = B_2B\), \(C_1C_2 = C_2C\), \(D_1D_2 = D_2D\).
c) Chỉ ra các hình chóp cụt có một đáy là tứ giác \(ABCD\).