Trong tam giác \(ABC\) ta có:
\(E\) là trung điểm của cạnh \(AB\)
\(D\) là trung điểm của cạnh \(AC\)
Nên \(ED\) là đường trung bình của \(∆ ABC\)
\( \Rightarrow ED//BC\) và \(ED = \displaystyle {1 \over 2}BC\) (tính chất đường trung bình của tam giác)
Trong hình thang \(BCDE,\) ta có: \(BC // DE\)
\(M\) là trung điểm cạnh bên \(BE\)
\(N\) là trung điểm cạnh bên \(CD\)
Nên \(MN\) là đường trung bình hình thang \(BCDE ⇒ MN // DE\)
\(MN =\displaystyle {{DE + BC} \over 2}\)\( = \displaystyle {{{\displaystyle {BC} \over 2} + BC} \over 2} = {{3BC} \over 4}\) (tính chất đường trung bình hình thang)
Trong tam giác \(BED\) ta có:
\(M\) là trung điểm của \(BE\)
\(MI // DE\)
Suy ra: \(MI\) là đường trung bình của \(∆ BED\)
\( \Rightarrow MI = \displaystyle {1 \over 2}DE = {1 \over 4}BC\) (tính chất đường trung bình tam giác)
Trong tam giác \(CED\) ta có:
\(N\) là trung điểm của \(CD\)
\(NK // DE\)
Suy ra: \(NK\) là đường trung bình của \(∆ CED\)
\( \Rightarrow NK = \displaystyle {1 \over 2}DE = {1 \over 4}BC\) (tính chất đường trung bình tam giác)
\(\eqalign{
& IK = MN - \left( {MI + NK} \right) \cr
& = {3 \over 4}BC - \left( {{1 \over 4}BC + {1 \over 4}BC} \right) = {1 \over 4}BC \cr
& \Rightarrow MI = IK = KN = {1 \over 4}BC \cr} \)