Bài 41 trang 142 SBT toán 7 tập 1

Đề bài

Hai đoạn thẳng \(AB\) và \(CD\) cắt nhau tại trung điểm \(O\) của mỗi đoạn thẳng. Chứng minh rằng \(AC // BD.\)

Lời giải

Xét \(∆AOC\) và  \(∆BOD\), ta có:

\(OA = OB\) (vì \(O\) là trung điểm của \(AB\))

\(\widehat {AOC} = \widehat {BO{\rm{D}}}\) (đối đỉnh)

\(OC = OD\) (vì \(O\) là trung điểm của \(DC\))

\( \Rightarrow ∆AOC = ∆BOD\) (c.g.c)

\( \Rightarrow \widehat A = \widehat B\) (hai góc tương ứng)

Mà  \(\widehat A ;\; \widehat B\) ở vị trí so le trong nên \(AC // BD\) (dấu hiệu nhận biết hai đường thẳng song song).


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”