Bài 41 trang 94 SBT toán 8 tập 2

Đề bài

Hình thang \(ABCD (AB // CD)\) có \(AB = 2,5cm, AD = 3,5cm,\) \(BD = 5cm\) và \(\widehat {DAB} = \widehat {DBC}\)  (h.28).

a) Chứng minh \(∆ ADB\backsim ∆ BCD.\)

b) Tính độ dài các cạnh \(BC, CD\).

c) Sau khi tính, hãy vẽ lại hình chính xác bằng thước và compa.

Lời giải

a) Vì \(AB//CD\) (gt) nên \(\widehat {ABD} = \widehat {BDC}\) (cặp góc so le trong)

Xét \(∆ ABD\) và \(∆ BDC\) có:

\(\widehat {DAB} = \widehat {DBC}\) (gt)

\(\widehat {ABD} = \widehat {BDC}\) (cmt)

\(\Rightarrow ∆ ADB\backsim ∆ BCD\) (g.g)

b) Vì \(∆ ADB\backsim ∆ BCD\) nên \(\displaystyle {{AB} \over {BD}} = {{AD} \over {BC}} = {{BD} \over {DC}}\)

Với \(AB = 2,5; AD = 3,5; BD = 5,\) ta có:

\(\eqalign{  & {{2,5} \over 5} = {{3,5} \over {BC}} = {5 \over {DC}}  \cr  &  \Rightarrow BC = {{5.3,5} \over {2,5}} = 7\;(cm) \cr&  \Rightarrow DC = {{5.5} \over {2,5}} = 10\;(cm)\cr} \)

c) 

- Dựng \(\Delta ABD\) có độ dài ba cạnh \(AB=2,5cm;AD=3,5cm;\) \(BD=5cm\).

- Dựng cung tròn tâm \(B\) bán kính \(7cm\), cung tròn tâm \(D\) bán kính \(10cm\). Hai cung tròn này cắt nhau tại \(C\) (\(C\) khác phía với \(A\) so với \(BD\)).

Ta được hình thang \(ABCD\) cần dựng.