Đáp án A:
Đặt \(z = {z_1}\overline {{z_2}} + \overline {{z_1}} {z_2}\) ta có: \(\overline z = \overline {{z_1}\overline {{z_2}} + \overline {{z_1}} {z_2}} = \overline {{z_1}\overline {{z_2}} } + \overline {\overline {{z_1}} {z_2}} \)\( = \overline {{z_1}} .\overline {\overline {{z_2}} } + \overline {\overline {{z_1}} } .\overline {{z_2}} = \overline {{z_1}} {z_2} + {z_1}\overline {{z_2}} = z\).
Do đó \({z_1}\overline {{z_2}} + \overline {{z_1}} {z_2} \in \mathbb{R}\).
Đáp án B:
Đặt \(z = {z_1}{z_2} + \overline {{z_1}} \overline {{z_2}} \) ta có: \(\overline z = \overline {{z_1}{z_2} + \overline {{z_1}} \overline {{z_2}} } = \overline {{z_1}{z_2}} + \overline {\overline {{z_1}} \overline {{z_2}} } \) \( = \overline {{z_1}} .\overline {{z_2}} + {z_1}{z_2} = z\) nên \(z \in \mathbb{R}\).
Đáp án C:
Đặt \(z = {z_1}\overline {{z_2}} \overline {{z_1}} {z_2}\) ta có: \(\overline z = \overline {{z_1}\overline {{z_2}} \overline {{z_1}} {z_2}} = \overline {{z_1}} \overline {\overline {{z_2}} } \overline {\overline {{z_1}} } .\overline {{z_2}} \) \( = \overline {{z_1}} .{z_2}.{z_1}.\overline {{z_2}} = z\) nên \(z \in \mathbb{R}\).
Đáp án D:
Đặt \(z = {z_1}{z_2} - \overline {{z_1}} \overline {{z_2}} \) ta có: \(\overline z = \overline {{z_1}{z_2} - \overline {{z_1}} \overline {{z_2}} } \) \( = \overline {{z_1}{z_2}} - \overline {\overline {{z_1}} .\overline {{z_2}} } = \overline {{z_1}} .\overline {{z_2}} - {z_1}{z_2} \ne z\) nên \(z \notin \mathbb{R}\).
Chọn D.