a)
\(\begin{array}{l}
\dfrac{{16}}{{{2^n}}} = 2\\
\dfrac{{{2^4}}}{{{2^n}}} = 2\\
{2^{4 - n}} = 2\\{2^{4 - n}}=2^1\\
\Rightarrow4 - n = 1\\\;\;\;\;n=4-1\\
\;\;\;\;n = 3
\end{array}\)
b)
\(\begin{array}{l}
\dfrac{{{{\left( { - 3} \right)}^n}}}{{81}} = - 27\\
\dfrac{{{{\left( { - 3} \right)}^n}}}{{{{\left( { - 3} \right)}^4}}} = {\left( { - 3} \right)^3}\\
{\left( { - 3} \right)^{n - 4}} = {\left( { - 3} \right)^3}\\
\Rightarrow n - 4 = 3\\\;\;\;\;n=4+3\\
\;\;\;\;n = 7
\end{array}\)
c)
\(\begin{array}{l}
{8^n}:{2^n} = 4\\{(8:2)^n} = 4\\
{4^n} = 4\\{4^n} = 4^1\\
\Rightarrow n = 1
\end{array}\)