Bài 42 trang 83 SGK Toán 9 tập 2

Cho tam giác \(ABC\) nội tiếp đường tròn. \(P,\, Q,\, R\) theo thứ tự là các điểm chính giữa các cung bị chắn \(BC, \, CA, \,AB\) bởi các góc \(A, \,B,\, C\).

a) Chứng minh \(AP \bot QR.\)

b) \(AP\) cắt \(CR\) tại \(I\). Chứng minh tam giác \(CPI\) là tam giác cân.

Lời giải

                        

a) Gọi giao điểm của \(AP\) và \(QR\) là \(K\). 

Vì \(P,\, Q,\, R\) theo thứ tự là các điểm chính giữa các cung bị chắn \(BC, \, CA, \,AB\) bởi các góc \(A, \,B,\, C\) nên \(sđ\overparen{AR}=sđ\overparen{RB}=\dfrac {1}{2}sđ\overparen{AB}\) , \(sđ\overparen{AQ}=sđ\overparen{QC}=\dfrac {1}{2}sđ\overparen{AC}\), \(sđ\overparen{PC}=sđ\overparen{PB}=\dfrac {1}{2}sđ\overparen{BC}.\)  

Suy ra \(sđ\overparen{AR}+sđ\overparen{QC}+sđ\overparen{CP}\)\(=\dfrac {1}{2}sđ\overparen{AB}+\dfrac {1}{2}sđ\overparen{AC}+\dfrac {1}{2}sđ\overparen{BC}\)\(=\dfrac {1}{2}(sđ\overparen{AB}+sđ\overparen{AC}+sđ\overparen{CB})\)\(=\dfrac {1}{2}.360^0=180^0\)

Xét đường tròn \((O)\) ta có:

 +) \(\widehat{AKR}\) là góc có đỉnh ở bên trong đường tròn chắn cung \(AR\) và \(QP\) nên:  \( \widehat{AKR}=\dfrac{sđ\overparen{AR}+sđ\overparen{QP}}{2}=\dfrac{sđ\overparen{AR}+sđ\overparen{QC}+sđ\overparen{CP}}{2}=\dfrac{1}{2}.180^0=90^0.\)

Vậy \(\widehat{AKR} = 90^0\) hay \(AP \bot QR\)

b) Xét đường tròn \((O)\) ta có:

+) \(\widehat{CIP}\)  là góc có đỉnh ở bên trong đường tròn chắn cung \(AR\)  và \(CP\) nên: \(\widehat{CIP}=\dfrac{sđ\overparen{AR}+sđ\overparen{CP}}{2}\)    (1)

+) \(\widehat {PCI}\) góc nội tiếp chắn cung \(PR\), nên \(\widehat {PCI}=\dfrac{sđ\overparen{RB}+sđ\overparen{BP}}{2}\)    (2) 

Theo giả thiết thì \(\overparen{AR} = \overparen{RB}\)  (3)

và  \(\overparen{CP} = \overparen{BP}\)        (4) 

Từ (1), (2), (3), (4) suy ra: \(\widehat {CIP}=\widehat {PCI}\). Do đó \(∆CPI\) cân.


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”