a) Gọi giao điểm của \(AP\) và \(QR\) là \(K\).
Vì \(P,\, Q,\, R\) theo thứ tự là các điểm chính giữa các cung bị chắn \(BC, \, CA, \,AB\) bởi các góc \(A, \,B,\, C\) nên \(sđ\overparen{AR}=sđ\overparen{RB}=\dfrac {1}{2}sđ\overparen{AB}\) , \(sđ\overparen{AQ}=sđ\overparen{QC}=\dfrac {1}{2}sđ\overparen{AC}\), \(sđ\overparen{PC}=sđ\overparen{PB}=\dfrac {1}{2}sđ\overparen{BC}.\)
Suy ra \(sđ\overparen{AR}+sđ\overparen{QC}+sđ\overparen{CP}\)\(=\dfrac {1}{2}sđ\overparen{AB}+\dfrac {1}{2}sđ\overparen{AC}+\dfrac {1}{2}sđ\overparen{BC}\)\(=\dfrac {1}{2}(sđ\overparen{AB}+sđ\overparen{AC}+sđ\overparen{CB})\)\(=\dfrac {1}{2}.360^0=180^0\)
Xét đường tròn \((O)\) ta có:
+) \(\widehat{AKR}\) là góc có đỉnh ở bên trong đường tròn chắn cung \(AR\) và \(QP\) nên: \( \widehat{AKR}=\dfrac{sđ\overparen{AR}+sđ\overparen{QP}}{2}=\dfrac{sđ\overparen{AR}+sđ\overparen{QC}+sđ\overparen{CP}}{2}=\dfrac{1}{2}.180^0=90^0.\)
Vậy \(\widehat{AKR} = 90^0\) hay \(AP \bot QR\)
b) Xét đường tròn \((O)\) ta có:
+) \(\widehat{CIP}\) là góc có đỉnh ở bên trong đường tròn chắn cung \(AR\) và \(CP\) nên: \(\widehat{CIP}=\dfrac{sđ\overparen{AR}+sđ\overparen{CP}}{2}\) (1)
+) \(\widehat {PCI}\) góc nội tiếp chắn cung \(PR\), nên \(\widehat {PCI}=\dfrac{sđ\overparen{RB}+sđ\overparen{BP}}{2}\) (2)
Theo giả thiết thì \(\overparen{AR} = \overparen{RB}\) (3)
và \(\overparen{CP} = \overparen{BP}\) (4)
Từ (1), (2), (3), (4) suy ra: \(\widehat {CIP}=\widehat {PCI}\). Do đó \(∆CPI\) cân.