\(\Delta ABC\) có \(BE\) là tia phân giác của góc \(ABC\) nên ta có:
\(\displaystyle {{EA} \over {EC}} = {{AB} \over {BC}}\) (tính chất đường phân giác của tam giác) (1)
\(\Delta ADB\) có \(BF\) là tia phân giác của góc \(ABD\) nên ta có:
\(\displaystyle {{FD} \over {FA}} = {{BD} \over {BA}}\) (tính chất đường phân giác của tam giác) (2)
Xét \(∆ ABC\) và \(∆ DBA\) có:
\(\widehat {BAC} = \widehat {BDA} = 90^\circ \)
\(\widehat B\) chung
\( \Rightarrow ∆ ABC \backsim ∆ DBA\) (g.g)
\( \Rightarrow\displaystyle {{BD} \over {BA}} = {{AB} \over {CB}}\) (3)
Từ (1), (2) và (3) suy ra: \(\displaystyle {{FD} \over {FA}} = {{EA} \over {EC}}\).