Bài 43 trang 125 SGK Toán 7 tập 1

Đề bài

Cho góc \(xOy\) khác góc bẹt. Lấy các điểm \(A,B\) thuộc tia \(Ox\) sao cho \(OA <OB.\)

Lấy các điểm \(C, D\) thuộc tia \(Oy\) sao cho \(OC = OA, OD = OB.\) Gọi \(E\) là giao điểm của \(AD\) và \(BC.\)

Chứng minh rằng:

a) \(AD = BC\);

b) \(∆EAB = ∆ECD\);

c ) \(OE\) là tia phân giác của góc \(xOy.\)

Lời giải

 

a) Xét \(∆OAD\) và \(∆OCB\) có:

+) \(OA = OC\) (gt)

+) \(\widehat{O}\) chung

+) \(OD = OB\) (gt)

\( \Rightarrow  ∆OAD = ∆OCB\) (c.g.c)

\( \Rightarrow  AD = BC \) (hai cạnh tương ứng).

b) \(∆OAD = ∆OCB\) (chứng mình câu a)

\( \Rightarrow \widehat{D_1}= \widehat{B_1}\); \(\widehat{A _{2}}= \widehat{ C _{2}}\) (các góc tương ứng)

Mặt khác:

\(\widehat {{A_1}} + \widehat {{A_2}} = {180^0}\) (Hai góc kề bù)

\(\widehat {{C_1}} + \widehat {{C_2}} = {180^0}\) (Hai góc kề bù)

Do đó \(\widehat {{A_1}} + \widehat {{A_2}}=\widehat {{C_1}} + \widehat {{C_2}}\)

Mà \(\widehat{A _{2}} = \widehat{ C _{2}}\) nên \(\widehat{A _{1}} = \widehat{ C _{1}}\)

\(AB = OB - OA \)                  (1)

\(CD = OD - OC  \)                (2)

\(OC = OA, OD = OB \)  (gt)    (3)

Từ (1), (2) và (3) suy ra \(AB = CD.\)

Xét \(∆EAB\) và  \(∆ECD\) có:

+) \(AB = CD\) (chứng minh trên)

+) \(\widehat{A _{1}} = \widehat{ C _{1}}\) (chứng minh trên)

+) \(\widehat{B_1} = \widehat{D_1}\) (chứng minh trên)

\( \Rightarrow ∆EAB =  ∆ECD \) (g.c.g)

c) \(∆EAB =  ∆ECD\) (chứng minh câu b)

\( \Rightarrow  EA = EC\) (hai cạnh tương ứng).

Xét \(∆OAE\) và \(∆OCE \) có:

+) \(OA=OC\) (gt)

+) \(EA=EC\) (chứng minh trên)

+) \(OE\) cạnh chung

\( \Rightarrow  ∆OAE = ∆OCE\) (c .c.c)

\( \Rightarrow \widehat{ AOE} = \widehat{ C OE}\) (hai góc tương ứng)

Vậy \(OE\) là tia phân giác của góc \(xOy.\)


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”