a) Để biểu thức ở vế phải xác định thì \(k \ge 0\).
Để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng \(2\sqrt 3 \) khi:
\(\begin{array}{l}\sqrt k + \sqrt 3 = 2\sqrt 3 \\ \Leftrightarrow \sqrt k = \sqrt 3 \Leftrightarrow k = 3\end{array}\)
b) Đường thẳng (d) cắt trục hoành tại điểm có hoành độ bằng \(1\) khi:
\(\dfrac{{\sqrt k + 1}}{{\sqrt 3 - 1}}.1 + \sqrt k + \sqrt 3 = 0\)
\(\Leftrightarrow \sqrt k + 1 \)\(+ (\sqrt 3 - 1)\left( {\sqrt k + \sqrt 3 } \right) = 0\)
\(\Leftrightarrow \sqrt k + 1 \)\(+ \sqrt 3 \sqrt k + \sqrt 3 .\sqrt 3 - \sqrt k - \sqrt 3 = 0\)
\(\Leftrightarrow \sqrt 3 .\sqrt k + 4 - \sqrt 3 = 0\)
\(\Rightarrow \sqrt k = \dfrac{{\sqrt 3 - 4}}{{\sqrt 3 }} < 0\)
Vậy đường thẳng (d) không cắt trục hoành tại điểm có hoành độ bằng 1 với mọi giá trị của \(k \ge 0\).
c) Gọi điểm cố định mà các đường thẳng (d) đều đi qua là \(P({x_0};{y_0})\).
Ta có:
\({y_0} = \dfrac{{\sqrt k + 1}}{{\sqrt 3 - 1}}{x_0} + \sqrt k + \sqrt 3 \)\(\Leftrightarrow {y_0}(\sqrt 3 - 1) \)\(= \left( {\sqrt k + 1} \right){x_0} + \left( {\sqrt 3 - 1} \right)\left( {\sqrt k + \sqrt 3 } \right)\)\(\Leftrightarrow {y_0}(\sqrt 3 - 1) \)\(= \left( {{x_0} + \sqrt 3 - 1} \right)\sqrt k + {x_0} + 3 - \sqrt 3 \)\(\Leftrightarrow \left( {{x_0} + \sqrt 3 - 1} \right)\sqrt k \)\(+ {x_0} + 3 - \sqrt 3 + {y_0}(1 - \sqrt 3 ) = 0 (*)\)
Phương trình (*) nghiệm đúng với mọi giá trị không âm của \(\sqrt k \), dó đó ta có:
\(\begin{array}{l}\left\{ \begin{array}{l}{x_0} + \sqrt 3 - 1 = 0\\{x_0} + 3 + \sqrt 3 + \left( {1 - \sqrt 3 } \right){y_0} = 0\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}{x_0} = 1 - \sqrt 3 \\{y_0} = \sqrt 3 - 1.\end{array} \right.\end{array}\)
Vậy, với \(k \ge 0\), các đường thẳng (d) đều đi qua điểm cố định \(P(1 - \sqrt 3 ;\sqrt 3 - 1).\)