Bài 44 trang 133 SGK Toán 8 tập 1

Gọi \(O\) là điểm nằm trong hình bình hành \(ABCD.\) Chứng minh rằng tổng diện tích của hai tam giác \(ABO\) và \(CDO\) bằng tổng diện tích của hai tam giác \(BCO\) và \(DAO.\)

Lời giải

Từ \(O\) kẻ đường thẳng \(d\) vuông góc với \(AB\) ở \({H_1}\), cắt \(CD\) ở \({H_2}.\)

Ta có \(O{H_1} ⊥ AB\) (theo cách vẽ)

Mà \(AB // CD\) (vì \(ABCD\) là hình bình hành)

Nên \(O{H_2}  ⊥ CD\)

Do đó  \({S_{ABO}} + {S_{CDO}} \)

\( = \dfrac{1}{2}O{H_1}.AB + \dfrac{1}{2}O{H_2}.CD\)

\(= \dfrac{1}{2}AB\left( {O{H_1} + O{H_2}} \right)\) (vì \(AB=CD\))

\(= \dfrac{1}{2}.AB.{H_1}{H_2}\)

\( \Rightarrow {S_{ABO}} + {S_{CDO}} = \dfrac{1}{2}{S_{ABCD}}\)    ( 1)

Suy ra  \({S_{BCO}} + {S_{DAO}} = \dfrac{1}{2}{S_{ABCD}}\)    (2)

Từ (1) và (2) suy ra:

 \({S_{ABO}} + {S_{CDO}} = {S_{BCO}} + {S_{DAO}}\)