Bài 44 trang 85 SBT toán 8 tập 1

Đề bài

Cho tam giác \(ABC,\) đường trung tuyến \(AM.\) Gọi \(O\) là trung điểm của \(AM.\) Qua \(O\) kẻ đường thẳng \(d\) cắt các cạnh \(AB\) và \(AC.\) Gọi \(AA’, BB’, CC’\) là các đường vuông góc kẻ từ \(A, B, C\) đến đường thẳng \(d.\) Chứng minh rằng: \({{AA' = }}\displaystyle {{BB' + CC'} \over 2}\)

Lời giải

Ta có: \(BB’ ⊥ d\;\; (gt)\)

            \(CC’ ⊥ d\;\; (gt)\)

Suy ra: \(BB’ // CC’\)

Tứ giác \(BB’CC’\) là hình thang

Kẻ \(MM’ ⊥ d\)

\( ⇒ MM’ // BB’ // CC’\)

Ta lại có: \(M\) là trung điểm của \(BC\) \((gt)\)

Nên \(MM’\) là đường trung bình của hình thang \(BB’CC’\)

\( \Rightarrow MM' = \displaystyle {{BB' + CC'} \over 2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)

Xét tam giác vuông \(AA’O\) và tam giác vuông \(MM’O:\)

\(\widehat {OA'A} = \widehat {OM'M}\)

\(AO = MO \;\;(gt)\)

\(\widehat {AOA'} = \widehat {MOM'}\) (đối đỉnh)

Do đó: \(∆ AA’O = ∆ MM’O\) (cạnh huyền, góc nhọn)

\(⇒ AA’ = MM’ \;\;\;(2)\)

Từ \((1)\) và \((2)\) suy ra: \({{AA' = }}\displaystyle {{BB' + CC'} \over 2}\).