Giả sử một đa giác đều \(n\) cạnh có độ dài một cạnh là \(a.\) Gọi \(R\) là bán kính đường tròn ngoại tiếp, \(r\) bán kính đường tròn nội tiếp.
\( \Rightarrow OB = R; OC = r\)
\(\widehat {AOB} = \displaystyle{{360^\circ } \over n}\)
\( \Rightarrow \widehat {COB} = \displaystyle{{360^\circ } \over n}:2 = {{180^\circ } \over n}\)
Trong \(∆OCB\) ta có: \(\widehat {OCB} = 90^\circ \)
\(\sin \widehat {COB} = \displaystyle{{CB} \over {OB}} = {\displaystyle{{a \over 2}} \over R} = {a \over {2R}}\)
\( \Rightarrow 2R = \displaystyle{a \over {\sin \displaystyle{{180^\circ } \over n}}}\)
\(\Rightarrow R =\displaystyle {a \over {2\sin \displaystyle{{180^\circ } \over n}}}\)
\(\tan \widehat {COB} = \displaystyle{{CB} \over {OC}} = {\displaystyle{{a \over 2}} \over r} = \displaystyle{a \over {2r}} \)
\(\Rightarrow 2r = \displaystyle{a \over {\tan \displaystyle{{180^\circ } \over n}}}\)
\(\Rightarrow r = \displaystyle{a \over {2\tan \displaystyle{{180^\circ } \over n}}}\)