a) \( \dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}\)
\( = \left( {1 + \dfrac{1}{x}} \right):\left( {1 - \dfrac{1}{x}} \right)\)
\(= \dfrac{x+1}{x}:\dfrac{x-1}{x}\)
\(=\dfrac{x+1}{x}.\dfrac{x}{x-1}=\dfrac{x+1}{x-1}\)
b) \( \dfrac{1-\dfrac{2}{x+1}}{1-\dfrac{x^{2}-2}{x^{2}-1}}\)
\( = \left( {1 - \dfrac{2}{{x + 1}}} \right):\left( {1 - \dfrac{{{x^2} - 2}}{{{x^2} - 1}}} \right)\)
\( =\dfrac{x+1-2}{x+1}:\dfrac{x^{2}-1-(x^{2}-2)}{x^{2}-1}\)
\( =\dfrac{x-1}{x+1}:\dfrac{x^{2}-1-x^{2}+2}{x^{2}-1}\)
\(=\dfrac{x-1}{x+1}:\dfrac{1}{(x-1)(x+1)}\)
\( =\dfrac{x-1}{x+1}.\dfrac{(x-1)(x+1)}{1}= (x-1)^{2}\).