\(a)\) Cách vẽ:
− Vẽ đường tròn \((0; 2cm)\)
− Từ điểm \(A\) trên đường tròn \((0; 2cm)\) đặt liên tiếp các cung bằng nhau có dây căng cung \(2cm.\)
\(\overparen{AB}\) \( =\overparen{BC}\) \( =\overparen{CD}\) \( =\overparen{DE}\) \( =\overparen{EG}\)
Nối \(AB, BC, CD, DE, EG, GA\) ta có lục giác đều \(ABCDEG\) nội tiếp trong đường tròn \((0; 2cm).\)
Kẻ đường kính vuông góc \(AB\) và \(DE\) cắt đường tròn tại \(I\) và \(L.\)
Ta có: \(\overparen{AI}= \overparen{IB};\) \(\overparen{LD} =\overparen{LE}\)
Kẻ đường kính vuông góc với \(BC\) và \(EG\) cắt đường tròn tại \(J\) và \(M.\)
\(\overparen{BJ} = \overparen{JC}\); \(\overparen{ME} = \overparen{MG}\)
Kẻ đường kính vuông góc với \(CD\) và \(AG\) cắt đường tròn tại \(N\) và \(K.\)
\(\overparen{KC}= \overparen{KD};\) \(\overparen{NA} = \overparen{NG}\)
Nối \(AI, IB, BJ, JC, CK, KD, DL,\) \(LE,\) \(EM,\) \(MG,\) \(GN,\) \(NA\)
Ta có đa giác đều \(12\) cạnh \(AIBJCKDLEMGN.\)
\(b)\) \(AI\) là cạnh của đa giác đều \(12\) cạnh.
Kẻ \(OH ⊥ AI\)
\(\widehat {IOH} = \displaystyle{{180^\circ } \over {12}} = 15^\circ \)
Xét tam giác vuông \(IOH\) có: \(OI = \displaystyle{{HI} \over {\sin \widehat {IOH}}} \)
\(\Rightarrow OI = \displaystyle{{AI} \over {2\sin \widehat {IOH}}}\)
\(\Rightarrow AI = OI.2\sin \widehat {IOH}\)
\(AI = 2. 2sin15^\circ \approx \)\( 1,04 (cm)\)
\(c)\) \(OH = r\) bán kính đường tròn nội tiếp đa giác đều \(12\) cạnh. Trong tam giác vuông \(OHI\) ta có \(OH = OI.\)\({\rm{cos}}\widehat {HOI} = 2.c{\rm{os15}}^\circ \approx {\rm{1,93 (cm) }}\)