Bài 4.79 trang 125 SBT đại số 10

Đề bài

Cho a, b, c là ba số thực thỏa mãn điều kiện \({a^3} > 36\) và \(abc = 1\)

Xét tam thức bậc hai \(f(x) = {x^2} - {\rm{a}}x - 3ac + \dfrac{{{a^2}}}{3}\).

a) Chứng minh rằng \(f(x) > 0,\forall x\);

b) Từ câu a) suy ra \(\dfrac{{{a^2}}}{3} + {b^2} + {c^2} > ab + bc + ca.\)

Lời giải

a) \(f(x)\) có

\(\Delta  = {a^2} - 4( - 3bc + \dfrac{{{a^2}}}{3})\)\( = \dfrac{{ - {a^2}}}{3} + 12bc\)\( = \dfrac{{ - {a^2}}}{3} + \dfrac{{12abc}}{a}\)\( = \dfrac{{ - {a^2}}}{3} + \dfrac{{12}}{a}\)

\( = \dfrac{{36 - {a^3}}}{{3a}} < 0\)(do giả thiết \({a^3} > 36\))

=>\(f(x) > 0,\forall x\).

b) \(\dfrac{{{a^2}}}{3} + {b^2} + {c^2} > ab + bc + ca\)

\( \Leftrightarrow \dfrac{{{a^2}}}{3} + {(b + c)^2} - 2bc > bc + a(b + c)\)

\( \Leftrightarrow {(b + c)^2} - a(b + c) - 3bc + \dfrac{{{a^2}}}{3} > 0\)

\( \Leftrightarrow f(b + c) > 0\)đúng vì \(f(x) > 0,\forall x.\)