Ta có:
\(\eqalign{
& {{\rm{x}}^2} + 2{\rm{x}} + 2 = {x^2} + x + x + 1 + 1 \cr
& = x(x + 1) + (x + 1) + 1 \cr
& = (x + 1)(x + 1) + 1 \cr
& = {(x + 1)^2} + 1 \cr} \)
Vì \((x+1)^2 ≥ 0\) mọi \(x ∈ \mathbb R\)
Mà \(1 > 0\) nên \((x+1)^2+ 1 > 0\) với mọi \(x ∈ \mathbb R.\)
Vậy đa thức \(f(x) = {{\rm{x}}^2} + 2{\rm{x}} + 2\) không có nghiệm.