Bài 49 trang 46 SBT toán 7 tập 2

Cho tam giác \(ABC\) cân tại \(A, D\) là trung điểm của \(BC.\) Gọi \(E \) và \(F\) là chân các đường vuông góc kẻ từ \(D\) đến \(AB\) và \(AC.\) Chứng minh rằng \(DE = DF.\) 

Lời giải

Ta có \(∆ABC\) cân tại \(A\) có \(DB = DC\) (gt) nên \(AD\) là đường trung tuyến của \(\Delta ABC\)  

Xét \(∆ABC\) cân tại \(A\) nên đường trung tuyến \(AD\) cũng là đường phân giác của góc \(BAC.\)

\(\eqalign{
& DE \bot AB\left( {gt} \right) \cr 
& DF \bot {\rm{A}}C\left( {gt} \right) \cr} \)

Suy ra: \(DE = DF\) (tính chất đường phân giác của góc: Các điểm nằm trên đường phân giác của một góc cách đều hai cạnh của góc đó )


Quote Of The Day

“Two things are infinite: the universe and human stupidity; and I'm not sure about the universe.”