Gọi thời gian đội I làm một mình xong việc là \(x\) (ngày), \(x > 0\).
Vì đội II hoàn thành công việc lâu hơn đội I là 6 ngày nên thời gian một mình đội II làm xong việc là \(x + 6\) (ngày).
Mỗi ngày đội I làm được \(\dfrac{1}{x}\) (công việc).
Mỗi ngày đội II làm được \(\dfrac{1}{x+6}\) (công việc)
Hai đội làm 4 ngày xong công việc nên mỗi ngày cả hai đội làm được \(\dfrac{1}{4}\) công việc ta có phương trình:
\(\dfrac{1}{x}\) + \(\dfrac{1}{x+6}\) = \(\dfrac{1}{4}\)
\(\begin{array}{l}
\Rightarrow 4\left( {x + 6} \right) + 4.x = x\left( {x + 6} \right)\\
\Leftrightarrow 4x + 24 + 4x = {x^2} + 6x\\
\Leftrightarrow {x^2} - 2x - 24 = 0
\end{array}\)
\(\Delta' = 1 + 24 = 25 = 5^2\)
\({x_1} = 1 + 5 = 6, {x_2} = 1 - 5 = -4\)
Vì \(x > 0\) nên \({x_2} = -4\) không thỏa mãn điều kiện của ẩn.
Vậy một mình đội I làm trong \(6\) ngày thì xong việc.
Một mình đội II làm trong \(12\) ngày thì xong việc.