Đề bài
Các điểm \({A_1},{A_2},....,{A_{19}},{A_{20}}\) được sắp xếp theo thứ tự đó trên đường tròn \((O)\) và chia đường tròn thành \(20\) cung bằng nhau. Chứng minh rằng dây \({A_1}{A_8}\) vuông góc với dây \({A_3}{A_{16}}\).
Đề bài
Cho tam giác \(ABC\) vuông góc ở \(A.\) Đường tròn đường kính \(AB\) cắt \(BC\) ở \(D.\) Tiếp tuyến ở \(D\) cắt \(AC\) ở \(P.\) Chứng minh \(PD = PC.\)
Đề bài
Hai dây cung \(AB\) và \(CD\) kéo dài cắt nhau tại điểm \(E\) ở ngoài đường tròn \((O)\) \((B\) nằm giữa \(A\) và \(E,\) \(C\) nằm giữa \(D\) và \(E).\) Cho biết \(\widehat {CDE} =75^o,\) \(\widehat {CED} = {22^o},\) \(\widehat {AOD} = {144^o}.\) Chứng minh \(\widehat {AOB} = \widehat {BAC}.\)
Đề bài
\(A, B, C\) là ba điểm thuộc đường tròn \((O)\) sao cho tiếp tuyến tại \(A\) cắt tia \(BC\) tại \(D.\) Tia phân giác của \(\widehat {BAC}\) cắt đường tròn ở \(M,\) tia phân giác của \(\widehat D\) cắt \(AM\) ở \(I.\) Chứng minh \(DI \bot AM.\)
Đề bài
Trên đường tròn \((O; R)\) vẽ ba dây liên tiếp bằng nhau \(AB, BC, CD,\) mỗi dây có độ dài nhỏ hơn \(R.\) Các đường thẳng \(AB\) và \(CD\) cắt nhau tại \(I,\) các tiếp tuyến của đường tròn tại \(B, D\) cắt nhau tại \(K.\)
\(a)\) Chứng minh \(\widehat {BIC} = \widehat {BKD}\)
\(b)\) Chứng minh \(BC\) là tia phân giác của \(\widehat {KBD}.\)
Đề bài
Cho đường tròn tâm \(O \) bán kính \(R\) và dây \(AB\) bất kỳ. Gọi \(M\) là điểm chính giữa của cung nhỏ \(AB.\) \(E\) và \(F\) là hai điểm bất kỳ trên dây \(AB.\) Gọi \(C\) và \(D\) tương ứng là giao điểm của \(ME,\) \(MF\) của đường tròn \((O).\) Chứng minh \(\widehat {EFD} + \widehat {ECD} = {180^o}.\)
Đề bài
Cho đường tròn tâm \(O\) bán kính \(R.\) Lấy \(3\) điểm \(A, B, C\) trên đường tròn đó sao cho \(AB = BC = CA.\) Gọi \(I\) là điểm bất kỳ của cung nhỏ \(BC\) \((\)và \(I\) không trùng với \(B, C).\) Gọi \(M\) là giao điểm của \(CI\) và \(AB.\) Gọi \(N\) là giao điểm của \(BI\) và \(AC.\) Chứng minh:
\(a)\) \(\widehat {ANB} = \widehat {BCI}\)
\(b)\) \(\widehat {AMC} = \widehat {CBI}\)