Hình vẽ biểu diễn lực:
Chia bản mỏng thành hai phần: ABCD và BMNQ. Trọng tâm của 2 phần này là O1 và O2. Nếu gọi trọng tâm của bản là G thì G sẽ là điểm đặt của hợp lực của các trọng lực P1 và P2 của hai bản nói trên.
Do các bản phẳng mỏng, đồng chất nên trọng lượng của mỗi tấm tỉ lệ với diện tích.
Ta có: \(\frac{P_{1}}{P_{2}}\) = \(\frac{S_{1}}{S_{2}}\) = \(\frac{6.9}{3.3}\) = 6
Khi đó G được xác định như sau:
\({{{P_1}} \over {{P_2}}} = {{HI} \over {H{O_1}}} = {{G{O_2}} \over {G{O_1}}} = 6 \Rightarrow G{O_2} = 6.G{O_1}\) (1)
Mặt khác ta có:
\(\eqalign{
& G{O_1} + G{O_2} = {O_1}{O_2} = \sqrt {{O_1}{I^2} + {O_2}{I^2}} \cr&= \sqrt {{{\left( {4,5 + 1,5} \right)}^2} + {{1,5}^2}} = 6,18 \cr
& \Rightarrow G{O_1} + G{O_2} = 6,18cm\left( 2 \right) \cr} \)
Từ (1) và (2) => GO1 = 0,88 cm
Vậy trọng tâm G nằm trên đường nối O1 và O2 và cách G1 một đoạn 0,88cm.