Bài 5 trang 121 SGK Giải tích 12

Cho tam giác vuông \(OPM\) có cạnh \(OP\) nằm trên trục \(Ox\). Đặt  \(\widehat {POM} = \alpha \)

và \(OM = R\), \(\left( {0 \le \alpha  \le {\pi  \over 3},R > 0} \right)\)

Gọi   là khối tròn xoay thu được khi quay tam giác đó xung quanh \(Ox\) (H.63).

a) Tính thể tích của  theo \(α\) và \(R\).      

b) Tìm \(α\) sao cho thể tích  là lớn nhất.

  

Lời giải

a) Ta có:  \(\left\{ \begin{array}{l}{x_M} = OP = R\cos \alpha \\{y_M} = PM = R\sin \alpha \end{array} \right. \Rightarrow \left\{ \begin{array}{l}R = \dfrac{{{x_M}}}{{\cos \alpha }}\\{y_M} = \dfrac{{{x_M}}}{{\cos \alpha }}.\sin \alpha \end{array} \right. \) \(\Rightarrow {y_M} = x_M \tan \alpha .\)

\( \Rightarrow \) Phương trình đường thẳng \(OM\) là: \(y=x.\ tan \alpha .\)

Khi đó thể tích của khối tròn xoay là:

\(\begin{array}{l}V = \pi \int\limits_0^{R\cos \alpha } {{x^2}{{\tan }^2}\alpha dx}  = \left. {\pi {{\tan }^2}\alpha .\dfrac{{{x^3}}}{3}} \right|_0^{R\cos \alpha }\\\;\;\; = \dfrac{{\pi {R^3}}}{3}.{\tan ^2}\alpha .{\cos ^3}\alpha  = \dfrac{{\pi {R^3}}}{3}.{\sin ^2}\alpha .\cos \alpha \\\;\;\; = \dfrac{{\pi {R^3}}}{3}.\cos \alpha \left( {1 - {{\cos }^2}\alpha } \right) = \dfrac{{\pi {R^3}}}{3}\left( {\cos \alpha  - {{\cos }^3}\alpha } \right).\;\;\left( {dvtt} \right).\end{array}\)

b) Xét hàm số: \(V (\alpha) = \dfrac{{\pi {R^3}}}{3}\left( {\cos \alpha  - co{s^3}\alpha } \right).\)

Đặt  \( t = \cos \alpha .\)

Với  \(\alpha  \in \left[ {0;\dfrac{\pi }{3}} \right] \Rightarrow t \in \left[ {0;\dfrac{1}{2}} \right].\)

Khi đó ta xét hàm: \(V\left( t \right) = \dfrac{{\pi {R^3}}}{3}\left( {t - {t^3}} \right)\)  trên \(\left[ {0;\;\dfrac{1}{2}} \right].\)

Có:  \(V'\left( t \right) = \dfrac{{\pi {R^3}}}{3}\left( {1 - 3{t^2}} \right) \Rightarrow V'\left( t \right) = 0\)

\( \Leftrightarrow 1 - 3{t^2} = 0 \Leftrightarrow \left[ \begin{array}{l}t = \dfrac{{\sqrt 3 }}{3}\;\;\left( {tm} \right)\\t =  - \dfrac{{\sqrt 3 }}{3}\;\;\left( {ktm} \right)\end{array} \right..\)

Ta có bảng biến thiên:

\( \Rightarrow \) Hàm số đạt giá trị lớn nhất khi  \(t = \dfrac{{\sqrt 3 }}{3} \Rightarrow \cos \alpha  = \dfrac{{\sqrt 3 }}{3} \) \(\Leftrightarrow \alpha  = \arccos \dfrac{{\sqrt 3 }}{3}\).

Vậy thể tích khối   lớn nhất khi \(\alpha  = \arccos \dfrac{{\sqrt 3 }}{3}.\)


Bài Tập và lời giải

Câu 1 trang 25 SGK Công Nghệ 8
Hình trụ được tạo thành như thế nào ? Nếu đặt mặt đáy của hình trụ song song với mặt phẳng chiếu cạnh ,thì hình chiếu đứng và hình chiếu cạnh có hình dạng gì ?

Xem lời giải

Câu 2 trang 25 SGK Công Nghệ 8
Hình nón được tạo thành như thế nào ? Nếu đặt mặt đáy của hình nón song song với mặt phẳng chiếu cạnh thì hình chiếu đứng và hình chiếu cạnh có hình dạng gì ?

Xem lời giải

Câu 3 trang 25 SGK Công Nghệ 8
Hình cầu được tạo thành như thế nào ? Các hình chiếu của hình cầu có đặc điểm gì ?

Xem lời giải