a) +) Vẽ đồ thị hàm số \(y = \dfrac{1}{2}{x^2}\)
Cho \(x=1 \Rightarrow y=\dfrac{1}{2}\). Đồ thị đi qua \({\left(1; \dfrac{1}{2} \right)}\).
Cho \(x=-1 \Rightarrow y=\dfrac{1}{2}\). Đồ thị đi qua \({\left(-1; \dfrac{1}{2} \right)}\).
Cho \(x=2 \Rightarrow y=\dfrac{1}{2}. 2^2=2\). Đồ thị hàm số đi qua điểm \((2; 2)\).
Cho \(x=-2 \Rightarrow y=\dfrac{1}{2}.(-2)^2=2\). Đồ thị hàm số đi qua điểm \((-2; 2)\).
Đồ thị hàm số \(y=\dfrac{1}{2}x^2\) là parabol đi qua gốc tọa độ và các điểm trên.
+) Vẽ đồ thị hàm số \(y=x^2\).
Cho \(x=1 \Rightarrow y=1\). Đồ thị đi qua \((1; 1)\).
Cho \(x=-1 \Rightarrow y=(-1)^2\). Đồ thị đi qua \((-1; 1)\).
Cho \(x=2 \Rightarrow y=2^2=4\). Đồ thị hàm số đi qua điểm \((2; 4)\).
Cho \(x=-2 \Rightarrow y=(-2)^2=4\). Đồ thị hàm số đi qua điểm \((-2; 4)\).
Đồ thị hàm số \(y=x^2\) là parabol đi qua gốc tọa độ và các điểm trên.
+) Vẽ đồ thị hàm số \(y=2x^2\).
Cho \(x=1 \Rightarrow y=2.1^2=2\). Đồ thị đi qua \((1; 2)\).
Cho \(x=-1 \Rightarrow y=2.(-1)^2\). Đồ thị đi qua \((-1; 2)\).
Cho \(x=2 \Rightarrow y=2.2^2=8\). Đồ thị hàm số đi qua điểm \((2; 8)\).
Cho \(x=-2 \Rightarrow y=2.(-2)^2=8\). Đồ thị hàm số đi qua điểm \((-2; 8)\).
Đồ thị hàm số \(y=2x^2\) là parabol đi qua gốc tọa độ và các điểm trên.
b)
Xác định điểm P trên trục Ox có hoành độ \(x = - 1,5\). Qua P kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A;B;C\)
Gọi \({y_A},{y_B},{y_C}\) lần lượt là tung độ các điểm \(A,\ B,\ C\). Ta có:
\(\eqalign{
& {y_A} = {1 \over 2}{( - 1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_B} = {( - 1,5)^2} = 2,25 \cr
& {y_C} = 2{( - 1.5)^2} = 2.2,25 = 4,5 \cr} \)
c) Xác định điểm \(P'\) trên trục Ox có hoành độ \(x = 1,5\). Qua \(P'\) kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A';B';C'\)
Gọi \({y_{A'}},{y_{B'}},{y_{C'}}\) lần lượt là tung độ các điểm \(A', B', C'\) . Ta có:
\(\eqalign{
& {y_{A'}} = {1 \over 2}{(1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_{B'}} = {(1,5)^2} = 2,25 \cr
& {y_{C'}} = 2{(1.5)^2} = 2.2,25 = 4,5 \cr} \)
Kiểm tra tính đối xứng: \(A\) và \(A'\), \(B\) và \(B'\), \(C\) và \(C'\) đối xứng với nhau qua trục tung \(Oy\).
d) Với mỗi hàm số đã cho ta đều có hệ số \(a > 0\) nên O là điểm thấp nhất của đồ thị.
Vậy với \(x = 0\) thì các hàm số trên đều có giả trị nhỏ nhất \(y=0.\)