Bài 5 trang 37 SGK Toán 9 tập 2

Cho ba hàm số:

\(y = \dfrac{1}{2}{x^2};\ y = {x^2};\ y = 2{x^2}\).

a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.

b) Tìm ba điểm \(A,\  B,\ C\) có cùng hoành độ \(x = -1,5\) theo thứ tự nằm trên ba đồ thị. Xác định tung độ tương ứng của chúng.

c) Tìm ba điểm \(A',\  B',\  C'\) có cùng hoành độ \(x = 1,5\) theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của \(A\) và \(A'\), \(B\) và \(B'\), \(C\) và \(C'\).

d) Với mỗi hàm số trên, hãy tìm giá trị của \(x\) để hàm số đó có giá trị nhỏ nhất.

Lời giải

a) +) Vẽ đồ thị hàm số \(y = \dfrac{1}{2}{x^2}\)

Cho \(x=1 \Rightarrow y=\dfrac{1}{2}\). Đồ thị đi qua \({\left(1; \dfrac{1}{2} \right)}\).

Cho \(x=-1 \Rightarrow y=\dfrac{1}{2}\). Đồ thị đi qua \({\left(-1; \dfrac{1}{2} \right)}\).

Cho \(x=2 \Rightarrow y=\dfrac{1}{2}. 2^2=2\). Đồ thị hàm số đi qua điểm \((2; 2)\).

Cho \(x=-2 \Rightarrow y=\dfrac{1}{2}.(-2)^2=2\). Đồ thị hàm số đi qua điểm \((-2; 2)\).

Đồ thị hàm số \(y=\dfrac{1}{2}x^2\) là parabol đi qua gốc tọa độ và các điểm trên.

+) Vẽ đồ thị hàm số \(y=x^2\).

Cho \(x=1 \Rightarrow y=1\). Đồ thị đi qua \((1; 1)\).

Cho \(x=-1 \Rightarrow y=(-1)^2\). Đồ thị đi qua \((-1; 1)\).

Cho \(x=2 \Rightarrow y=2^2=4\). Đồ thị hàm số đi qua điểm \((2; 4)\).

Cho \(x=-2 \Rightarrow y=(-2)^2=4\). Đồ thị hàm số đi qua điểm \((-2; 4)\).

Đồ thị hàm số \(y=x^2\) là parabol đi qua gốc tọa độ và các điểm trên.

+) Vẽ đồ thị hàm số \(y=2x^2\).

Cho \(x=1 \Rightarrow y=2.1^2=2\). Đồ thị đi qua \((1; 2)\).

Cho \(x=-1 \Rightarrow y=2.(-1)^2\). Đồ thị đi qua \((-1; 2)\).

Cho \(x=2 \Rightarrow y=2.2^2=8\). Đồ thị hàm số đi qua điểm \((2; 8)\).

Cho \(x=-2 \Rightarrow y=2.(-2)^2=8\). Đồ thị hàm số đi qua điểm \((-2; 8)\).

Đồ thị hàm số \(y=2x^2\) là parabol đi qua gốc tọa độ và các điểm trên.

   

b) 

Xác định điểm P trên trục Ox có hoành độ \(x =  - 1,5\). Qua P kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A;B;C\)

Gọi \({y_A},{y_B},{y_C}\) lần lượt là tung độ các điểm \(A,\ B,\ C\). Ta có:

\(\eqalign{
& {y_A} = {1 \over 2}{( - 1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_B} = {( - 1,5)^2} = 2,25 \cr
& {y_C} = 2{( - 1.5)^2} = 2.2,25 = 4,5 \cr} \)

c) Xác định điểm \(P'\)  trên trục Ox có hoành độ \(x = 1,5\). Qua \(P'\)  kẻ đường thẳng song song với trục Oy, nó cắt các đồ thị \(y = \dfrac{1}{2}{x^2};y = {x^2};y = 2{x^2}\) lần lượt tại \(A';B';C'\)

Gọi \({y_{A'}},{y_{B'}},{y_{C'}}\)  lần lượt là tung độ các điểm \(A', B', C'\) . Ta có:

\(\eqalign{
& {y_{A'}} = {1 \over 2}{(1,5)^2} = {1 \over 2}.2,25 = 1,125 \cr
& {y_{B'}} = {(1,5)^2} = 2,25 \cr
& {y_{C'}} = 2{(1.5)^2} = 2.2,25 = 4,5 \cr} \)

Kiểm tra tính đối xứng: \(A\) và \(A'\), \(B\) và \(B'\), \(C\) và \(C'\) đối xứng với nhau qua trục tung \(Oy\).

d) Với mỗi hàm số đã cho ta đều có hệ số \(a > 0\) nên O là điểm thấp nhất của đồ thị.

Vậy với  \(x = 0\) thì các hàm số trên đều có giả trị nhỏ nhất \(y=0.\)