a) Ta có: \(\displaystyle {a \over b} = {{a{\rm{d}}} \over {b{\rm{d}}}}\) (với \(d > 0\));
\(\displaystyle{c \over d} = {{bc} \over {b{\rm{d}}}}\) (với \(b > 0\)).
Mà \(\displaystyle {a \over b} < {c \over d}\) nên \(\displaystyle {{a{\rm{d}}} \over {b{\rm{d}}}} < {{bc} \over {b{\rm{d}}}}\)
Vì \(bd > 0\) nên \(ad < bc\).
b) Có \(ad < bc\)
Với \(b>0, d > 0\) suy ra \(\displaystyle {{a{\rm{d}}} \over {b{\rm{d}}}} < {{bc} \over {b{\rm{d}}}}\) (1)
Mặt khác: \(\dfrac{{ad}}{{bd}} = \dfrac{a}{b};\,\,\dfrac{{bc}}{{bd}} = \dfrac{c}{d}\) (2)
Từ (1) và (2) suy ra \(\displaystyle {a \over b} < {c \over d}\).